UNIVERSIDADE DE SÃOPAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS

CLASSIFICAÇÃO MECÂNICA DE PECAS ESTRUTURAIS DE MADEIRA

JULIO E. DE MELO Engenheiro civil

Dissertação apresentada como parte dos requisitos necessários para a obtenção do título "Mestre em Engenharia de Estruturas".

BANCA EXAMINADORA: Dr. João Cesar Hellmeister – Orientador (EESC-USP) Prof. Dr. Péricles Brasiliense – Fusco (POLI-USP) Prof. Dr. Carlito Calil Junior – (EESC-USP)

AGRADECIMENTOS

Meus sinceros agradecimentos

Ao Professor João Cesar Hellmeister pela orientação e incentivo na realização da dissertação;

Ao Laboratório de Produtos Florestais LPF/IBDF, pelo suporte técnico, financeiro e administrativo;

Ao Engenheiro do LPF, Cleuber D. J. Lisboa, pela contribuição na análise dos dados obtidos e revisão final;

Ao IBDF, especialmente ao seu Presidente, Dr. Mauro Silva Reis pelo apoio ao meu aperfeiçoamento profissional, na condição de pesquisador do LPF;

Ao Coordenador dos Programas Especiais do IBDF, Joao Carlos Nedel, pelo suporte financeiro, do POLAMAZONIA;

Ao Projeto PNUD/FAO/BRA/IBDF-008/82, especialmente ao seu Diretor, Dr. Carlos Marx Ribeiro Carneiro, pelo apoio financeiro;

Aos colegas e funcionários do LPF, pela contribuição na realização dos ensaios, intercâmbio de ideias e apoio manifestado;

Aos colegas e funcionários do Laboratório de Madeiras e Estruturas de Madeira da EESC/USP, pelo intercâmbio de ideias e apoio manifestado;

A Sra. Nagete Habli Brandão, pelos serviços de revisão geral;

A Sra. Regina Celia de M. Garcia, pelo trabalho de datilografia.

SUMÁRI0

SIMBOLOGIA	
RESUMO	
ABSTRACT	
1 INTRODUÇÃO	
2 REVISAO BIBLIOGRAFICA	
2.1 Classificação visual da resistência, da madeira	
2.2 Classificação mecânica da resistência da madeira	
2.3 Máquina de classificação mecânica	1
2.4 Controle de qualidade na classificação	2
2.5 Classificação de peças estruturais no Brasil	3
3 EXPERIMENTAÇÃO	3
3.1 Seleção de espécies	3
3.2 Amostragem	1
3.3 Ensaios estruturais	1
3.4 Densidade aparente e teor de umidade	3
3.5 Pequenos corpos de prova isentos de defeitos	3
3.6 Correção dos dados obtidos	3
4 RESULTADOS E DISCUSSAO)
4.1 Agrupamento de espécies	2
4.2 Determinação das tensões admissíveis	7
4.3 Definição das classes de tensões admissíveis)
4.4 Números de Renard)
5 CONCLUSÕES)
6 TABELAS	2
7 APENDICES	
1: Fórmulas utilizadas na determinação dos módulos de elasticidade e tensão de ruptura para os diferentes tipos de ensaios)
2: Cálculo do módulo de elasticidade real	2
3: Resultados dos ensaios realizados	1
4: Resultados dos ensaios retirados da tese de Della Lúcia	1
8 REFERENCIAS BIBLIOGRAFICAS	3

SIMBOLOGIA

- a = Distância de cada ponto de carga ao apoio mais próximo.
- A =Área da seção transversal.
- b = Largura da viga.
- c = Fator de correção utilizado na determinação da flecha devida ao cisalhamento. Para vigas retangulares vale 6/5.
- d = Altura da viga.
- $D_{ap} = Densidade aparente, a 12\% de teor de umidade.$
- E = Módulo de elasticidade na flexão pura ou módulo de elasticidade real. É obtido por ensaio numa máquina universal de ensaios, sendo a peça solicitada perpendicularmente ao eixo principal de maior inércia, bi apoiada, com duas cargas aplicadas simetricamente.
- E' = Módulo de elasticidade aparente, na flexão.
- $E_{Maq} = Módulo de elasticidade aparente obtido na máquina de classificação. O ensaio é realizado com a peça de madeira solicitada perpendicularmente ao eixo principal de menor inércia, bi apoiada, com carga concentrada central.$
- E_{Sim} = Módulo de elasticidade simulado. É obtido numa máquina universal de ensaios, de maneira similar ao E_{Maq} .
- $f_b = Resistência básica para uma determinada propriedade da madeira.$
- fl_{im} = Resistência que se encontra dentro do regime elástico, no ensaio de flexão.
- f_w = Resistencia na ruptura à flexão. Obtida numa peça bi apoiada, com duas cargas aplicadas simetricamente.
- f_{adm} = Tensão admissível na flexão.
- f_{wm} = Resistencia média a ruptura obtida para a propriedade de cada espécie de madeira no ensaio em pequenos corpos de prova isentos de defeitos.
- $f_{wk} = Resistência característica da madeira.$
- G = Módulo de rigidez ou módulo de elasticidade transversal.
- I = Momento de inércia em relação ao centro de gravidade da peça.
- k = Fator de redução que considera o efeito de longa durarão de carga, efeito dimensional e fator de segurança.
- k_d = Fator de redução devido ao "efeito de altura" em peças solicitadas a flexão.
- L = Vão livre na flexão.
- L₁ = Distância entre os dois pontos de aplicação de carga em relação ao qual se mede a flecha relativa.
- M = Momento fletor.
- n = Número de ensaios realizados.
- p = Carga aplicada no ensaio, dentro do regime elástico.
- Δp = Intervalo de carga aplicada no ensaio, dentro do regime elástico.

pr = Carga de ruptura na flexão. Obtida no ensaio de peça bi apoiada, com duas cargas aplicadas simetricamente.

Q = Força cortante.

R = Coeficiente de correlação.

 \bar{s} = Erro padrão de estimativa na distribuição dos dados.

t.05 = "t" de Student, para o limite inferior da distribuição, ao nível de 5% de probabilidade.

v = Velocidade de aplicação de carga na máquina universal de ensaios.

 $y_c =$ Flecha devido ao cisalhamento.

 $y_f =$ Flecha devido a flexão.

- Δy_f = Intervalo da flecha devida a flexão.
- yt = Flecha total.
- Δy_t = Intervalo da flecha total.

z = Taxa de variação da deformação especifica das fibras extremas, por unidade de tempo.

RESUMO

Por serem os principais métodos de classificação da resistência da madeira utilizada em diferentes países, a classificação visual e a classificação mecânica foram aqui descritas de maneira simplificada, mostrando suas vantagens e desvantagem nas aplicações prática. Também foram analisadas as principais máquinas utilizadas na classificação mecânica da resistência da madeira e a atual situação da classificação estrutural no Brasil. A parte experimental deste trabalho inclui uma descrição mais detalhada da máquina de classificação mecânica Computermatlc MK P IVa, e a análise quanto a precisão com que a mesma determina o módulo de elasticidade de peças estruturais, solicitadas perpendicularmente ao eixo principal de menor inércia. Aproximadamente 35 vigas, com 5,08cm x 10,16cm de seção transversal nominal por 3m de comprimento para cada uma de seis espécies, foram ensaiadas na máquina classificadora e, de modo similar, numa máquina universal de ensaios.

Os resultados obtidos, corrigidos para 12% de teor de umidade, foram bastante satisfatórios, apresentando um alto grau de correlação entre os módulos de elasticidade determinados nas duas máquinas. As espécies estudadas foram agrupadas pela otimização do coeficiente de correlação entre a resistência da madeira na ruptura e módulo de elasticidade real à flexão, traçando-se a curva de correlação linear entre estas duas variáveis, objetivando o estabelecimento da linha de tensões admissíveis, e consequentemente, a classificação estrutural pela resistência, utilizando as séries de Renard ou "Preferred Numbers Séries".

ABSTRACT

The visual and mechanical stress grading are simply described here. It shows their advantages and disadvantages in the practical application. The principal machines utilized in mechanical stress grading are also escribed, and the actual situation of the structural grading in Brazil is discussed.

The experimental part of this work includes more detail on the machine computermatic MK P IVa, and analysis of the precision with that it determines on structural lumber, the modulus of elasticity with perpendicular solicitation to the principal axis of minor inertia. Approximately 35 pieces measuring 5,08cm x 10,16cm of nominal transversal section, with 3m of length for each one of the six species were tested on the grading machine. They were also tested in a similar way on a universal testing machine. The data obtained, adjusted to 12 percent moisture content, was enough satisfactory. It exhibited a high degree of correlation between the modulus of elasticity required in the two machines. The species were grouped by maximization of the coefficient of correlation between the bending true modulus of elasticity and modulus of rupture. The linear regression line was draught to stablish the allowable stress line and consequently, the grade stresses, through the Preferred Numbers Series.

1 INTRODUÇAO

Embora possuidores desta imensa reserva florestal que é a Amazônia, nosso progresso no desenvolvimento de uma tecnologia de madeiras voltada para sua caracterização e classificação quanto ao uso estrutural tem sido, até o momento, praticamente nulo. O mercado brasileiro de madeiras de uso estrutural está restrito a algumas poucas espécies de usos já tradicionais, impossibilitado, portanto, de competir com outros materiais, tais como o aço e o concreto. Fatores tais como o número reduzido de entidades de pesquisa na área de madeiras e, consequentemente, o desconhecimento quase total das espécies madeireiras da Amazônia, a falta de disciplinas específicas em estruturas de madeira na maioria das universidades brasileiras e também a falta de revisão nas normas brasileiras a mais de 30 anos contribuem na inviabilização da utilização da madeira como um material estrutural, em termos econômicos.

Nos últimos 10 anos, com o aperfeiçoamento técnico de algumas entidades de pesquisa existentes no país, nota-se a preocupação em caracterizar novas espécies, definir seu uso especifico, procurando ampliar as opções de mercado, tornando-o mais alternativo em termos de utilização das inúmeras espécies de madeiras brasileiras. O que se propõe neste trabalho é apresentar, por meio de experimentação prática, um dos processos comumente utilizados em alguns países da Europa, Estados Unidos, Canada e Austrália, objetivando classificar peças estruturais de madeira pela sua resistência individual.

A classificação estrutural de madeiras quanto a resistência é um processo de separar as peças de acordo com sua habilidade em suportar cargas (20). Historicamente, a classificação da resistência da madeira se desenvolveu com base na inspeção visual de todos os lados da peça de madeira. Em 1956, entretanto, foi descoberto que uma relação estatística existia entre a resistência da madeira na ruptura à flexão e o seu módulo de elasticidade medido sobre um vão relativamente curto (14). Esta descoberta possibilitou o desenvolvimento de máquinas que, automática e continuamente, classificam as peças de madeira quanto a resistência.

Este tipo de ensaio, que é não destrutivo, é proposto como o meio de avaliação mais preciso das propriedades de resistência ruptura de peças estruturais de madeira, sem alterar seu uso potencial.

A aquisição, pelo Laboratório de Produtos Florestais do Instituto Brasileiro de Desenvolvimento Florestal, LPF/IBDF, de uma máquina de classificação mecânica, de origem australiana, possibilitou a realização deste trabalho, cujo objetivo consiste em apresentar, na forma de revisão bibliográfica, uma descrição simplificada dos métodos de classificação mais difundidos em todo o mundo, que são a classificação visual e classificação mecânica da resistência da madeira, verificação da eficácia da máquina de classificação mecânica em determinar o módulo de elasticidade de uma peça estrutural e, finalmente, estabelecer uma curva de classificação de tensões admissíveis para grupos de espécies nacionais, com base na relação entre a resistência da madeira na ruptura à flexão e seu correspondente módulo de elasticidade.

2 REVISAO BIBLIOGRAFICA

2.1 Classificação visual da resistência da madeira

A derivação das tensões admissíveis pela classificação visual geralmente envolve dois estágios.

O primeiro está relacionado com a determinação da resistência básica a partir dos valores de resistência médios obtidos em pequenos corpos de prova isentos de defeitos. A resistência básica é definida como as tensões que podem ser permanentemente suportadas com segurança por uma estrutura ideal, cujos componentes sejam isentos de defeitos naturais que possam reduzir a resistência da madeira (1, 45).

O segundo estágio está relacionado com a derivação da classe de tensão admissível por meio da verificação dos defeitos presentes na madeira e da consideração dos mesmos, conforme regras da classificação visual previamente estabelecidas.

Dado o aspecto anisotrópico e heterogêneo da madeira, várias correções são feitas nos valores médios de resistência dos pequenos corpos de prova isentos de defeitos na obtenção das resistências básicas. Estas correções se devem, principalmente, aos seguintes efeitos (6, 8, 25, 27):

- Variabilidade do material Por ser um material orgânico, a madeira apresenta variação numa mesma propriedade de resistência oriunda principalmente de espécies diferentes, região de origem das espécies de madeira, posição da peça dentro da árvore e também em uma mesma peça de madeira (25, 31). Sendo as tensões admissíveis provenientes do valor médio de resistência obtido em pequenos corpos-de-prova isentos de defeitos, é essencial estimar o menor valor de resistência provável de ocorrer na pratica. Normalmente adota-se o limite inferior da distribuição ao nível de 5% de probabilidade, para uma determina da propriedade de resistência. Algumas normas internacionais adotam o limite inferior ao nível de 1% (8, 25, 45).
- Efeito dimensional O efeito dimensional aparece em função da adequação dos diferentes tamanhos das peças estruturais aos valores determinados para os tamanhos fixos dos corpos de prova tradicionais.

E considerado principalmente na altura das vigas solicitadas a flexão, pois a cada aumento de altura da viga não corresponde um acréscimo equivalente em sua resistência (6, 7, 27).

Em 1924, Newlin e Trayer investigaram este fenômeno e desenvolveram a relação abaixo, baseando-se em ensaios com vigas de até 12 polegadas de altura (7):

$$K_{d} = 1,07 - 0,07 \sqrt{\frac{d}{2}}$$

Onde,

 K_d = fator de redução devido ao "efeito de altura" em peças solicitadas a flexão. d = altura da viga, em polegadas.

Com o desenvolvimento de construções com vigas laminadas, Dawley e Youngquist, em 1947, pesquisaram novamente esta teoria e desenvolveram outra relação com base em ensaios de vigas de madeira com alturas de até 16 polegadas. Esta relação foi publicada em 1954 por Freas e Selbo, sendo recomendada para uso em cálculo estrutural de peças solicitadas a flexão com altura superior a 305mm (7, 8, 17, 18, 27),

$$K_{\rm d} = 0.81 \left(\frac{{\rm d}^2 + 92300}{{\rm d}^2 + 56800} \right)$$

onde,

d = altura da viga, em milímetros.

Posteriormente, em 1965, Billy Bohannan desenvolveu uma nova relação baseada na teoria estatística da resistência dos materiais, onde conclui que a resistência da madeira na ruptura à flexão depende da altura, do comprimento da viga de madeira e também do tipo de carregamento, porém independe da largura da viga.

Os resultados teóricos foram comparados favoravelmente com os resultados obtidos em ensaios com vigas de Douglas-fair, cujas dimensões variaram de uma polegada de altura por 14 polegadas de comprimento até 31-1/2 polegadas de altura por 48 pés de comprimento. A equação encontrada, transformada em relação a uma peça de 2 polegadas de altura, com carga pontual central, é a seguinte (6, 7):

$$K_{d} = \left(\frac{2}{d}\right)^{\frac{1}{9}}$$

Onde,

d = altura da viga, em polegadas.

- Duração de carga O fenômeno de deformação lenta em peças de madeira solicitadas a flexão ou tração paralela às fibras é bastante significativo, ocorrendo possivelmente pela acomodação dos elementos anatômicos da madeira sob a ação de carregamento permanente, causando uma redução na sua capacidade de carga ao longo do tempo. Pesquisas mostraram que, em geral, a resistência de peças solicitadas por cargas permanentes diminui, durante um período de 10 anos, para aproximadamente 62,5% do valor obtido nos ensaios tradicionais (8, 19, 25, 27, 28, 36, 37, 39, 44).
- Fator de redução É um dos fatores de redução mais importante e muito utilizado nos materiais de construção. Corresponde a uma possível sobrecarga acidental nas estruturas de madeira. É um fator pessoal, adotado em função do projeto estrutural, sendo comumente utilizado nos Estados Unidos, com os seguintes valores, para as folhosas (6):

0,70 - Flexão estática.

- 0,70 Tração paralela às fibras.
- 0,76 Compressão paralela às fibras.
- 0,36 Cisalhamento paralelo às fibras.
- 1,00 Compressão perpendicular às fibras.
- 1,00 Módulo de elasticidade.
- Condição de exposição É bem conhecida a influência do teor de umidade na resistência da madeira. Como as peças estruturais são frequentemente usadas em condição verde, as tensões admissíveis são determinadas na base verde e, consequentemente, sua utilização em estado seco ao ar e em ambiente seco possibilita majorar a capacidade de carga destas peças (6, 25). A equação geral para determinar a resistência básica é a seguinte:

$$f_{b} = \frac{f_{wm} - t_{.05} * s}{K} = \frac{f_{wk}}{K}$$

Onde,

 f_b = resistência básica para uma determinada propriedade.

 f_{wm} = resistência média na ruptura para cada espécie de madeira obtida nos ensaios em pequenos corpos de prova isentos de defeitos.

 $f_{wk} = resistência característica da madeira.$

t.05 = "t", de student, para o limite inferior da distribuição, ao nível de 5% de probabilidade.

s = desvio padrão da distribuição dos dados.

k = fator de redução para o efeito de longa duração de carga, efeito dimensional e fator de segurança.

Na Inglaterra, os valores de k são únicos para cada propriedade e estão relacionados abaixo (8, 17, 45):

2,25 – Flexão e Tração paralela às fibras.

1,40 – Compressão paralela às fibras.

- 2,25 Cisalhamento paralelo às fibras.
- 1,20 Compressão perpendicular às fibras.
- 1,00 Módulo de elasticidade.

Finalmente, para se obter as tensões admissíveis, é necessário utilizar um outro fator de redução nas resistências básicas, tomando-se em consideração os defeitos naturais da madeira. Normalmente, este fator de redução é determinado com base nos ensaios em peças estruturais. Em alguns casos são utilizados cálculos teóricos. Seu valor é a razão da resistência de uma peça com defeitos e a resistência de outra peça de dimensões comparáveis, livre de defeitos.

As peças estruturais são usualmente agrupadas, considerando-se um número limitado de classes em função deste fator de redução. Cada classe inclui certo tipo, frequência e combinação de defeitos, fornecendo as bases para o estabelecimento do sistema de classificação visual (6). As peças estruturais são então inspecionadas visualmente em todos os lados e extremos e, ao constatar os defeitos, são separadas em classes de tensão conforme as regras adotadas para a classificação visual.

Os ingleses, por exemplo, usam quatro classes de tensões, que resultam na redução da resistência básica para 75%, 65%, 50% e 40% (17, 45).

Portanto, resumidamente, as tensões admissíveis são obtidas multiplicando-se a resistência básica pelas classes acima descritas, para uma particular condição de serviço.

A seguir, serão descritas esquematicamente as principais características visuais utilizadas na elaboração das regras de classificação visual pela resistência da madeira (19, 45):

- Nós O efeito desfavorável do nó se deve a distorção das fibras em relação a sua direção normal e não devido a alguma inferioridade do material de que é composto (45). Alguns tipos de nó resistem certo esforço, outros transmitem pouco ou nenhum esforço, dando assim origem a concentração de tensões. Sua influência nas propriedades de resistência é bastante variável. Como exemplo, peças solicitadas à tração paralela às fibras ou à flexão são influenciadas tanto pelo tamanho do nó, responsável pela inclinação das fibras, como pelo número, posição e área de sua projeção sobre a seção transversal da peça (45, 51).
- O processo utilizado para medir a influência do nó na resistência de uma peça estrutural é feito fixando-se uma dimensão máxima permissível em relação a face onde atua (11).
- Rachaduras As rachaduras afetam as propriedades de resistência da madeira de um modo geral. Surgem principalmente da separação das fibras devido à perda de umidade e liberação de tensões internas, podendo originar pequenas e grandes rachaduras (51). Peças solicitadas a tração ou compressão paralela às fibras são pouco afetadas pelas rachaduras. Seu controle é feito em função da aparência e da possibilidade de deterioração devido a penetração da umidade.
- Inclinação das fibras A inclinação das fibras em relação a direção longitudinal da árvore afeta bastante algumas propriedades de resistência da madeira (51). Peças submetidas à flexão são mais resistentes quando a direção das fibras está a 90 graus com a direção da aplicação de carga. Já as peças sujeitas a tração ou compressão paralela às fibras apresentam maior resistência quando a direção das fibras é perfeitamente paralela a direção da aplicação de carga. Fibras inclinadas dão origem a componentes de tensão na direção transversal, diminuindo a resistência em vista da menor capacidade de carga da madeira quando solicitada a compressão perpendicular às fibras (45). Sua influência em termos de capacidade de carga é calculada considerando-se o ângulo entre a direção das fibras e os lados das peças.
- Deterioração A inspeção visual não possibilita verificar com segurança a extensão da influência causada pelo ataque de fungos (19). Portanto, peças seriamente atacadas não devem ser classificadas para suportar cargas.
- Empenamento Geralmente este defeito não afeta a resistência das peças de madeira e, nas regras de classificação visual, as limitações existentes são em função do uso final das peças (45).
- Densidade A correlação direta existente entre o peso ou densidade com a resistência da madeira é utilizada na determinação da classe de tensão da peça estrutural. A densidade pode ser avaliada aproximadamente, medindo-se a percentagem de camadas de crescimento de madeira mais velha (de verão) em relação à madeira nova (de primavera) (19, 51).

A determinação das tensões admissíveis para a madeira pela classificação visual é bastante difundida nos países mais desenvolvidos em tecnologia da madeira, como os Estados Unidos, a Inglaterra, a Alemanha e Austrália, devido a tradição já adquirida pela sua utilização, baixo custo e facilidade de aplicação. A aceitação da classificação visual cria certa resistência para a difusão de outros métodos, como a classificação mecânica. Mesmo sendo mais onerosa, devido a necessidade de aquisição de equipamentos, é bem mais precisa. Assim, vale ressaltar as principais deficiências na utilização da classificação visual (15, 45, 46):

- Requer um considerável manejo das peças, pois todos os lados devem ser examinados;
- Admite, implicitamente, resistência igual para as peças contendo os mesmos defeitos;
- Considera apenas os defeitos aparentes;
- Aplicação das regras de classificação visual exige muita prática e experiência dos classificadores para o reconhecimento dos defeitos e das espécies de madeira;
- Depende do julgamento humano na classificação das peças;
- Admite a resistência das peças estruturais a partir das propriedades de resistência média, que é obtida nos ensaios com pequenos corpos de prova isentos de defeitos.

2.2 Classificação mecânica da resistência da madeira

A classificação por meios mecânicos possibilitou um avanço na metodologia para a caracterização estrutural das peças de madeira, substituindo os ensaios de pequenos corpos de prova isentos de defeitos pelo ensaio não destrutivo da peça a ser utilizada estruturalmente. A significativa correlação existente entre a resistência na ruptura e o módulo de elasticidade a flexão, comprovada desde 1956 em peças estruturais de madeira com defeitos (15, 19), possibilitou o desenvolvimento de métodos não destrutivos de avaliação da resistência máxima de peças de madeira. De fato, determinando experimentalmente o módulo de elasticidade de uma peça estrutural, pode-se avaliar sua resistência sem atingir a ruptura da peça. Dentre os métodos desenvolvidos, a classificação mecânica atingiu maior aceitação comercial em vista de sua simplicidade e eficiência, aliada a uma precisão satisfatória na determinação do módulo de elasticidade na flexão em peças estruturais (25, 33). Em virtude da grande dispersão dos valores dos módulos de elasticidade, da anisotropia e da heterogeneidade da madeira, diferentes módulos de elasticidade podem ser obtidos numa mesma peça, dependendo da distribuição de suas características, do sistema de aplicação de carga e também do lado no qual a carga é aplicada (15, 25).

Ensaios realizados nos Estados Unidos e Canadá mostraram a existência de pequenas variações nos módulos de elasticidade quando obtidos pela aplicação de carga nos lados opostos das peças solicitadas como tábuas, com a carga aplicada na direção perpendicular ao eixo principal de menor inércia (15, 25). Na Inglaterra foram encontrados coeficientes de correlação superiores a 0,90, entre o módulo de elasticidade aparente (com cisalhamento) e o módulo de elasticidade real (flexão pura), ambos obtidos com a peça sendo solicitada com a carga aplicada na direção perpendicular ao eixo principal de maior inércia (21, 28, 48). A correlação entre o módulo de elasticidade real e o módulo de elasticidade aparente, sendo solicitado como tábua, apresentou um coeficiente de 0,88 (48). Já na correlação entre a resistência a ruptura e o módulo de elasticidade real, ambos obtidos por solicitação como viga, o coeficiente variou de 0,65 a 0,85 (18, 47, 49).

Estas correlações tornaram possível o desenvolvimento de máquinas de classificar peças estruturais de madeira pela determinação do módulo de elasticidade na flexão. Optou-se pelo tipo de ensaio no qual a carga é aplicada na direção perpendicular ao eixo principal de menor inércia (como tábua), devido a maior facilidade de obtenção de grandes flechas, sob a ação de pequenas cargas, e também pelo fato da seção transversal das peças estruturais normalmente apresentarem mais variação de dimensão na altura do que na largura da seção. Embora as propriedades de resistência, obtidas em pequenos corpos de prova isentos de defeitos, sejam bem relacionadas estatisticamente com a densidade, o mesmo não acontece com as peças estruturais em vista da influência do tipo, local e tamanho do defeito sobre a sua resistência. Por esta razão, a densidade somente, não é um bom indicador das propriedades de resistência das peças estruturais (23).

A derivação das tensões admissíveis pela classificação mecânica segue, resumidamente, o roteiro abaixo (25):

- Determinação dos módulos de elasticidade e da resistência na ruptura à flexão, em peças estruturais, das espécies aptas a serem utilizadas com fins estruturais, conforme normas preestabelecidas;
- Determinação das tensões admissíveis em três fases:
 - Estabelecer a equação de regressão entre o módulo de elasticidade e a resistência a ruptura à flexão. A regressão linear é considerada de boa representatividade e é utilizada em vários estudos (1, 28, 36);
 - Determina-se o limite inferior de exclusão da distribuição dos valores encontrados para incluir a variabilidade da madeira. Como exemplo, nos Estados Unidos é usado o limite inferior de 5% (5,19) e, na Inglaterra, este limite é de 1% (8,14). Na pratica, esta linha é traçada paralelamente a linha de regressão linear (6, 19, 37);
 - Finalmente, a equação das tensões admissíveis é determinada multiplicando-se a equação resultante do limite inferior por um fator de redução que considere o efeito de longa duração de carga e o fator de segurança propriamente dito.

O efeito dimensional deve também ser considerado em peças cuja altura ultrapasse 305mm (7, 17, 18). O valor do efeito de longa duração de carga é de 9/16 mais 10% para cargas permanentes, com duração prevista de até 10 anos (19, 25, 28, 36, 37, 39, 44). O fator de segurança comumente utilizado é de 10/13, resultando no fator de redução de 1/2,1, usado nas coníferas (6, 19).

Como os fatores que afetam a resistência para as folhosas são considerados mais difíceis de serem avaliados experimentalmente, um valor mais restritivo para o fator de redução é recomendado, sendo de 1/2,3 (19).

Graficamente, o procedimento acima pode ser ilustrado da seguinte forma (Figura 1):

Módulo de elasticidade

Figura 1 – Diagrama das tensões admissíveis: A linha A correspondente a equação de regressão linear entre o módulo de elasticidade e a resistência na ruptura à flexão; A linha B correspondente a um limite inferior na distribuição dos dados; A linha C é a linha das tensões admissíveis.

- Estabelecimento das classes de tensão em função das necessidades do mercado nacional e, se possível, internacional. É aconselhável que as classes de tensão obedeçam a uma progressão aritmética ou geométrica ou que sigam algum processo já comprovado na prática, a fim de facilitar o aprimoramento das classes obtidas e de adequá-las mais facilmente as necessidades de diferentes mercados. A diferença entre as sucessivas classes de tensão deve ser de magnitude tal que associe a simplicidade em função do menor número de classes possível e eficiência em função de um maior número de classes (39).
- Determinação da correlação entre o módulo de elasticidade na flexão com as demais propriedades de resistência da madeira. Nos Estados Unidos utilizam como tensão admissível na compressão e na tração paralela às fibras, 80% da tensão admissível na flexão e, para as outras propriedades, se baseiam nos resultados dos ensaios em pequenos corpos de prova isentos de defeitos (19, 23, 25, 39).

Embora a determinação das tensões admissíveis pela classificação mecânica seja um processo relativamente recente e, portanto, mais sujeito a contínuos aperfeiçoamentos, sua utilização se encontra em crescente ascensão devido às inúmeras vantagens oferecidas:

- O módulo de elasticidade é um dos melhores indicadores de resistência das peças de madeira do que as medidas de defeitos (32);
- As peças de madeira são classificadas individualmente pelas suas próprias características, independente da espécie e considerando tanto a superfície como o interior da peça de madeira. Desta forma, a classificação mecânica permite aumentar significativamente a produção de peças do mais alto grau de qualidade e, consequentemente, o relativo alto custo do sistema será compensado pela larga e melhor utilização das madeiras como material de construção (32, 38);
- Projetos de pesquisas têm demonstrado que a classificação mecânica alcança maior sucesso na classificação das folhosas quando tomadas em grupos, o que traz novas vantagens para a exploração da heterogênea floresta amazônica (30, 32, 39);
- A resistência é obtida na própria peça a ser utilizada estruturalmente.

2.3 Máquina de classificação mecânica

Existem diferentes tipos de máquinas de classificação mecânica de resistência de madeiras sendo comercializadas em alguns países. Seus esquemas básicos de funcionamento são praticamente os mesmos, isto é, todas elas aplicam uma carga concentrada central, perpendicular ao eixo principal de menor inércia, numa peça de madeira bi apoiada.

Geralmente as máquinas classificadoras possuem os elementos mostrados na Figura 2:

Figura 2 – Esquema geral da máquina classificadora.

- Cilindros horizontais e verticais que transmitem velocidade a peça de madeira (nºs 1 e 2 da Fig. 2);
- Controle da velocidade de classificação;
- Cilindros verticais de apoio da peça de madeira (nº 2);
- Cilindro vertical de aplicação de carga (nº 3);
- Cilindros verticais de controle de entrada das peças de madeira (nº 7);
- Controle de velocidade e razão da aplicação de carga;
- Mecanismo para a leitura e o registro da carga e da flecha. Algumas máquinas operam com carga fixa, registrando a flecha correspondente, e outras fixam a flecha, registrando a carga necessária para causar a flecha prefixada (nº 4);
- Possuem uma unidade de memória que permite armazenar as informações obtidas de cada peça e, consequentemente, classificá-la dentro de classes de tensão previamente estabelecidas;
- Revolveres de tintas para imprimir na madeira a coloração correspondente a classe de tensão (nº 5);
- Fotocélulas elétricas que comandam a aplicação de carga ou a leitura de flecha (nº 6).

As principais máquinas de classificação mecânica de comercializadas apresentam as seguintes características:

Continuous Lumber Tester – CLTI (25, 26, 46)

• Origem: EUA;

- Dimensão das peças: 5cm x 10cm a 5cm x 30cm de seção transversal e 2,40m a 8,00m de comprimento;
- Velocidade de classificação: 30m/min a 300m/min;
- Determinação: módulo de elasticidade, sendo a peça solicitada como tábua primeiro de um lado e, em seguida, no lado oposto;
- Vão livre: 122cm;
- Tipo de leitura: mede a força necessária para produzir uma flecha prefixada a cada 15cm ao longo da peça.

Stress-o-Matic Machine – SOM (25, 26, 46)

- Origem: EUA;
- Dimensão das peças: 5cm x 10cm a 5cm x 30cm de seção transversal e 2,40m ou mais de comprimento. Velocidade de classificação: Modelo SOM 400 122m/min;
- Modelo SOM 600 183m/min;
- Determinação: módulo de elasticidade mínimo, sendo a peça solicitada como tábua somente de um lado;
- Vão livre: 122cm;
- Tipo de leitura: mede a carga necessária para produzir uma flecha prefixada.

Micro-stress Grading Machine (15, 46)

- Origem: Austrália;
- Dimensão das peças: 2,5cm x 2,5cm a 7,5cm x 30,0cm;
- Velocidade de classificação: até 30m/min;
- Determinação: mede os módulos de elasticidade em quatro limites de flechas preestabelecidos, com a peça solicitada como tábua. É necessário passar as peças na máquina de ambos os lados para compensar o efeito de possíveis empenos;
- Vão livre: 91,44cm;
- Tipo de leitura: mede a flecha causada por uma carga prefixada;
- Número de classes de tensão: sete.

Computermatic grading machine (26, 40, 46)

- Origem: Austrália;
- Dimensão das peças: 2,5cm x 2,5cm a 7,5cm x 30,0cm;
- Velocidade de classificação: até 137m/min;
- Determinação: mede o módulo de elasticidade a cada 15cm ao longo da peça, sendo solicitada como tábua somente de um lado;
- Vão livre: 91,44cm;
- Tipos de leitura: mede a flecha causada por uma carga prefixada;
- Número de classes de tensão: cinco.

2.4 Controle de qualidade na classificação.

Após o estabelecimento das regras de classificação, a utilização de classificadoras mecânicas pelos madeireiros deve ser acompanhada de uma aferição periódica por um instituto legal, responsável pelo controle e fiscalização dos produtos classificados. Assim, para ser instalada, o interessado solicitaria a aprovação do instituto, bem como a presença de um técnico para o ajuste dos controles e a colocação de lacres nos comandos relacionados com a calibração da máquina, impossibilitando o acesso de operadores da máquina.

Com o uso contínuo, torna-se necessário um programa de supervisão constante, visando manter a ajustagem padrão da máquina classificadora. O conceito de aferição é simples e se resume em passar algumas peças na máquina classificadora e, em seguida, repetir os ensaios numa máquina universal até a ruptura, a fim de verificar se sua propriedade é aquela indicada pela máquina classificadora (16, 25). Nos EUA, o processo comum de aferição é fazer passar 20 peças por classes de tensão na máquina

classificadora que, logo depois, são levadas a ruptura numa máquina universal de ensaios. A análise destes resultados é função da precisão estabelecida pelo instituto responsável. Um método de análise requer que 19 das 20 peças tenham resistência na ruptura dentro de cada classe (5% de exclusão para o caso de cinco classes de tensão). Outro método, menos restritivo, requer que de 100 peças ensaiadas (20 peças de cada classe de tensão) não mais do que cinco tenham resistência na ruptura menor que a resistência na ruptura de cada classe e que não mais do que duas das cinco peças sejam da mesma classe (25).

2.5 Classificação de peças estruturais no Brasil

As normas de cálculo e execução de estruturas de madeira, NB 11, adotadas no Brasil datam de 1951, não tendo sido revisadas até o momento. As tensões admissíveis são obtidas por um processo bastante simplificado, que consiste em adotar uma percentagem fixa dos valores médios de resistência de pequenos corpos de prova isentos de defeitos, em condição verde. Assim, por exemplo, a tensão admissível na flexão é igual a 15% do valor médio de resistência na ruptura à flexão, obtido em laboratório para pequenos corpos de prova isentos de defeitos, conforme o método brasileiro. Para a compressão paralela às fibras, adota-se como tensão admissível 20% do valor médio da resistência na ruptura à compressão paralela (2,3).

A partir do final da década passada, iniciaram-se os primeiros estudos objetivando introduzir um sistema de classificação para as madeiras nacionais (19, 23, 24).

A dissertação de mestrado de Marcos Furiati, sob a orientação do Dr. J. C. Hellmeister, pela Escola de Engenharia de São Carlos-USP, estabeleceu uma classificação de peças estruturais de Peroba rosa, utilizando o "ensaio de obra", que consiste na determinação do módulo de elasticidade de peças estruturais, no local de execução da estrutura, colocando um peso fixo (um saco de cimento ou cal) sobre a parte central da viga bi apoiada, solicitada como tábua, medindo-se em seguida a flecha correspondente. O método permite, de maneira simples e rápida, a classificação das peças mais resistentes para a utilização nas regiões de maior solicitação.

A tese de Ph.D. de Ricardo M. Della Lúcia, sob a orientação do Dr. John F. Senft, da Purdue University, mostrou a possibilidade de se estabelecer uma classificação mecânica de resistência para as madeiras brasileiras, utilizando peças estruturais de três espécies da Amazônia (Virola, Tachi e Pequiá), agrupando-as e derivando as classes de tensão, conforme procedimento em uso nos EUA.

Amantino R. de Freitas defendeu tese de doutorado pela Virginia Polytechnic Institute and State University, Virginia, EUA, onde procura otimizar a relação entre a resistência na ruptura e o módulo de elasticidade à flexão para grupos de espécies, utilizando dados obtidos em pequenos corpos de prova isentos de defeitos de 23 espécies de madeiras brasileiras.

Atualmente, encontra-se em execução nos laboratórios de tecnologia da madeira do Instituto Brasileiro de Desenvolvimento Florestal – IBDF, em Brasília, e do Instituto Nacional de Pesquisa da Amazônia – INPA, em Manaus, extensivos projetos de classificação mecânica de peças estruturais de madeira utilizando, ambos, a versão australiana de máquina classificadora, MK P IVa.

Este trabalho representa mais um esforço no sentido de tornar mais eficiente a utilização da madeira como material estrutural no Brasil pela classificação mecânica aplicada as nossas madeiras, reduzindo o coeficiente de segurança atualmente utilizado, pela determinação das propriedades de resistência na própria peça a ser utilizada estruturalmente.

3 EXPERIMENTAÇÃO

3.1 Seleção de espécies

Com base em inventário florestal, considerando a ocorrência, o volume por hectare, as características gerais da árvore e a densidade, sempre que possível (29), foram selecionadas para estudo em laboratório 53 espécies de madeiras da Floresta Nacional do Tapajós, no Município de Santarém, Estado do Pará, visando caracterizá-las e classificá-las em usos finais. Destas 53 espécies foram selecionadas 13 para estudo mais detalhado de suas propriedades em peças estruturais, visando estabelecer as tensões admissíveis pela classificação mecânica pela correlação entre o módulo de elasticidade e a resistência na ruptura à flexão. Em face da extensão do projeto, os objetivos propostos neste trabalho foram feitos com as seis espécies de madeira relacionadas a seguir:

Andiroba *Carapa guianensis* Copaíba *Copaifera reticulata* Mururé *Brosimum acutifolium* Pau-jacaré *Laetia procera* Tachi preto folha grande *Tachigalia myrmecophylla* Tauari *Couratari guianensis* Sin.: *Couratari pulchra*

3.2 Amostragem

As amostras de madeira para os ensaios foram coletadas ao longo da Rodovia Santarém – Cuiabá, entre os quilômetros 50 e 250, utilizando o sistema direto de amostragem ao acaso (4), com as adaptações necessárias para se considerar as peculiaridades da região amazônica. Assim, 25 árvores, em média, por espécie, 2 toras por árvores e 2 amostras por tora, foram selecionadas aleatoriamente.

As amostras foram retiradas com dimensões de 10cm x 15cm x 310cm e 10cm x 20cm x 310cm, a fim de possibilitar a obtenção de peças aparelhadas, próximas às dimensões nominais da seção transversal de 5,08cm x 10,16cm (2x4 pol.) e 5,08cm x 15,24cm (2 x 6 pol.) respectivamente, e de 3,00m de comprimento. O teor de umidade de ensaio foi de aproximadamente 12%.

Para cada árvore derrubada foi coletado todo o material botânico necessário para posterior confirmação de identificação junto ao Instituto Nacional de Pesquisa da Amazônia – INPA, em Manaus, e Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA, em Belém.

Este trabalho foi desenvolvido utilizando-se peças de seção transversal nominal de 5,08cm x 10,16cm, tendo, em média, 35 peças por espécie.

3.3 Ensaios estruturais

As amostras foram transportadas para o LPF, em Brasília e empilhadas de modo a permitir uma secagem natural. Em seguida o material foi aparelhado para se obter seção transversal próximo a nominal de 5,08cm x 10,16cm (2x4 pol.) quando atingida a umidade de equilíbrio de 12%, numa sala de climatização, com temperatura de 20°C \pm 1°C e umidade relativa do ar de 65% \pm 2%. Após a verificação do teor de umidade, com um medidor de umidade de agulha, mediu-se a seção transversal de cada peça próximo aos extremos e ponto central, tomando-se o valor médio para fins de cálculo. Os tipos de ensaios estruturais, bem como suas principais características, realizados conforme as normas britânicas BSI/79 (10), serão descritos a seguir, ficando as fórmulas para cálculo dos módulos de elasticidade e da resistência a ruptura na flexão, reunidas no Apêndice 1.

Módulo de elasticidade obtido na máquina classificadora - EMaq.

Figura 3 – Esquema de ensaio.

A máquina classificadora utilizada para a determinação do módulo de elasticidade das peças estruturais é de origem australiana, fabricada pelo Plessey Telecommunications, modelo computermatic MK P IVa, cujos controles normais são os seguintes (40):

- Distância entre os apoios, L = 91,44cm (3 pés). Esta distância é sempre constante;
- Velocidade de classificação em laboratório 60m/min;
- Carga aplicada, 2617N. Esta carga se encontra seguramente dentro do regime elástico da madeira, conforme verificações realizadas pelo Laboratório de Produtos Florestais do IBDF, em Brasília, sendo derivada do valor de tensão de 1372N/cm², comumente considerado dentro do regime elástico para as coníferas (42).

Deduzindo,

$$P = \frac{2bd^2f_{lim}}{3L}$$

Onde,

- P = carga a ser aplicada pela classificadora, 2617N.
- b = largura nominal da peça, 10,16cm.
- d = altura nominal da peça, 5,08cm.
- L = vão livre, 91,44cm.
- $f_{lim} = 1372 N/cm^2$.
- Tempo de espera para a aplicação de carga (delay),1.
- Razão da aplicação de carga (restrictor), 3.

Esta máquina determina a flecha correspondente a carga fixa aplicada, a cada 15,24cm (6 pol.) ao longo do comprimento da peça estrutural, carregada como tábua e com umidade de equilíbrio de aproximadamente 12%, sendo a primeira medida efetuada a 71 cm do início da peça e a última a 71cm do final. O lado da aplicação de carga foi escolhido aleatoriamente, tendo em vista existir na máquina um dispositivo que compensa o possível efeito desfavorável de empenos fornecendo, portanto, valores estatisticamente iguais para os lados opostos das peças de madeira. Alguns ensaios foram realizados para a verificação deste efeito. Os resultados obtidos serão apresentados posteriormente. A máquina classificadora possui uma unidade de memória que, após ler todas as flechas a cada 15,24cm ao longo da peça de madeira, envia os sinais a um teletipo, onde os valores destas flechas são impressos na mesma sequência de leitura. As Figuras 4 e 5 mostram vistas da máquina de classificação mecânica de tensões.

Figura 4 – Máquina classificadora de tensões.

Figura 5 – Máquina classificadora de tensões.

Módulo de elasticidade simulado - Esim

Figura 6 – Esquema de teste.

O módulo de elasticidade simulado (E_{sim}) foi obtido numa máquina universal de ensaios INSTRON, modelo 1127, de maneira similar a determinação do E_{Maq} , diferindo somente em relação ao aspecto dinâmico com que o E_{Maq} é determinado.

A velocidade de ensaio do cutelo foi de 8,23mm/min, obtida da fórmula dada pelas normas britânicas, British Standards Institution BSI/79 (10),

$$v = \frac{zL^2}{6d}$$

Onde

z = taxa de variação da deformação específica das fibras extremas por unidade de tempo. A BSI/79, fixa a taxa de 0.003cm/cm.min.

L = vão livre, 91,44cm.

d = altura nominal da peça, 5,08cm.

Os ensaios foram feitos nos pontos mais fraco, forte e central da peça de madeira, conforme indicação da máquina classificadora. Aplicou-se uma carga inicial de 245N, para acomodação da peça de madeira, aumentando-a com incrementos de 490N, fazendo a leitura da flecha correspondente até atingir a carga máxima de 2862N. Traçou-se o gráfico, carga x flecha, para cada um dos três pontos de cada peça de madeira, determinando, assim, o módulo de elasticidade,

Módulo de elasticidade real – E

Figura 7 – Esquema de ensaio.

O módulo de elasticidade real, determinado na flexão pura, foi obtido utilizando-se a máquina universal de ensaios INSTRON, modelo 1127, seguindo as recomendações das normas britânicas (10). A aplicação de carga foi feita em dois pontos distintos entre si de 6d, simetricamente, cuja flecha correspondente foi medida por relógios comparadores, com a precisão de 0,01mm relativamente a estes dois pontos. A peça de madeira, a uma umidade de equilíbrio de aproximadamente 12% foi solicitada perpendicularmente ao eixo principal de maior inércia (viga), com a velocidade da aplicação de carga dada pela fórmula,

$$v = \frac{(3L - 4^a)za}{3d}$$

Onde,

v = velocidade da aplicação de carga, 18,3mm/min.

L = vão livre, 18d.

d = distância de cada ponto de carga ao apoio, 60,96cm.

z = taxa de variação da deformação específica das fibras extremas, por unidade de tempo. A BSI/79 recomenda a taxa de 0,003cm/cm.min.

d = altura nominal da peça de madeira, 10,16cm.

A carga aplicada foi calculada do mesmo modo que o E_{Sim} inicializando com 245N para o ajuste do conjunto e em seguida, para cada incremento de carga, lia-se a flecha correspondente até atingir a carga máxima de 2862N.

Resistência na ruptura à flexão - fw

Figura 8 – Esquema de ensaio.

Após as leituras das cargas e flechas para a determinação do módulo de elasticidade real, a viga foi levada a ruptura. A zona de ruptura das peças ensaiadas foi fotografada para posterior análise e documentação. A Figura 9 mostra uma vista da máquina universal de ensaios INSTRON, preparada para realizar o ensaio de determinação do módulo de elasticidade real e resistência na ruptura à flexão.

Figura 9 – Ensaio de determinação do módulo de elasticidade real.

3.4 Densidade aparente e teor de umidade

O teor de umidade e a densidade aparente (peso/volume, a uma determinada umidade) foram obtidos em todas a peças retirando-se corpos de prova de seção transversal igual a das peças e comprimento de 5cm, próximo a zona de ruptura no ensaio de resistência a ruptura na flexão.

Os pesos dos corpos de prova foram obtidos numa balança Sauter, de sensibilidade 0,01g, e os volumes obtidos por medidas diretas com paquímetro, de sensibilidade 0,05mm.

As fórmulas utilizadas encontram-se no Apêndice 1.

3.5 Pequenos corpos de prova isentos de defeitos

Após a ruptura na flexão das peças estruturais, foram retirados corpos de prova isentos de defeitos para ensaios de flexão estática, realizados de acordo com as normas pan-americanas COPANT/72 (12), numa máquina universal de ensaios INSTRON, MODELO 1115, determinando seu módulo de elasticidade e resistência na ruptura à flexão. Cada corpo de prova com seção transversal de 5,08cm x 5,08cm (2x2 pol.) e vão livre de 71,0cm (14d), cujo esquema estático é o de viga bi apoiada com carga central. A velocidade do ensaio foi de 2,54mm/min, sendo registrado automaticamente o gráfico de carga x flecha, onde o deflectômetro elétrico utilizado possui uma ampliação de escala de 5 vezes. Após a ruptura, retirou-se também um pequeno bloco próximo ao ponto de ruptura para a determinação do teor de umidade.

3.6 Correção dos dados obtidos

Com um coeficiente de correção publicado na edição de 1955 do <u>Wood Handbook</u> (19), todos os resultados obtidos neste trabalho foram corrigidos para o teor de umidade de 12%. A variação de resistência da madeira com a umidade associada à dificuldade de realizar os ensaios das peças com o mesmo teor de umidade tornou necessário corrigi-los para uma um valor comum, a fim de possibilitar a comparação entre os resultados obtidos. Vários estudos têm demonstrado que o módulo de elasticidade varia pouco com a variação da umidade para peças de tamanho estrutural (15, 50, 51). Isto se explica pelo balanceamento entre o ganho de resistência com a perda de umidade e a perda de resistência com a consequente diminuição da seção transversal e surgimento de possíveis defeitos com a secagem, os quais tem maior influência na ruptura da peça. O coeficiente corrige o módulo de elasticidade na flexão em 2% para a variação de 1% da umidade e corrige a resistência na ruptura na flexão em 4% para a variação de 1% da umidade. Embora este coeficiente tenha sido determinado para espécies de madeiras americanas, sua utilização em espécies brasileiras não constitui um erro apreciável por ser um fenômeno comum para todas as espécies e também pela pequena variação em torno da umidade de equilíbrio de 12%, presente em todas as peças.

Outro ajustamento comumente feito nos resultados de ensaios em peças estruturais é em relação a influência da força cortante expressa pela razão entre o vão e a altura da peça (L/d), sobre o módulo de elasticidade na flexão. Da teoria da resistência dos materiais, sabe-se que a flecha total de uma viga é

composta da combinação de um componente devido a flexão (y_f) e outro devido ao cisalhamento (y_c) . Assumindo superposição de efeitos, a flecha total (y_t) se torna,

$$y_t = y_f + y_c$$

Para o aço, por exemplo, a influência do cisalhamento na flexão normalmente é desprezada, por ser muito pequena (43). Para a madeira é necessária uma seção bem maior para um mesmo vão livre do que uma peça de aço. Portanto, é importante verificar a extensão do erro cometido quando se despreza esta influência.

O módulo de rigidez ou módulo de elasticidade ao cisalhamento, que é função da flecha devida ao cisalhamento, é um parâmetro difícil de obter para materiais ortotrópicos como a madeira. Uma pratica comum é utilizar um intervalo para a razão entre o módulo de elasticidade real e o módulo de rigidez (G) possibilitando, assim, avaliar a influência do cisalhamento na flexão.

Em tese de doutorado, defendida na Escola de Engenharia de São Carlos, SP, Rocco Lahr verificou esta influência em peças estruturais de oito espécies brasileiras, chegando a uma variação da razão E/G de 33 a 40. No presente trabalho adotou-se um valor intermediário de 35 (41).

Quanto maior a relação L/d, menor se torna esta influência, sendo, em geral, considerada desprezível para valores acima de 20 (19). Para efeito de comparação entre os módulos de elasticidade obtidos nos diferentes ensaios realizados neste trabalho, pode-se verificar influência do cisalhamento na flexão, sempre que necessário, utilizando-se o método descrito no Apêndice 2.

4 RESULTADOS E DISCUSSÃO

A Tabela l mostra os resultados dos ensaios de flexão e densidade básica (peso seco/volume verde) obtidos em pequenos corpos de prova isentos de defeitos, retirados das peças estruturais após a ruptura por flexão. Não houve diferenças significativas ao nível de 5% entre os módulos de elasticidade das peças retiradas das duas toras (ver amostragem), possibilitando assim, juntar os dados de uma mesma árvore numa única média.

A Tabela II mostra os resultados de todos os ensaios feitos em peças estruturais. Aqui também não houve diferenças significativas ao nível de 5% entre as médias das duas toras, sendo, portanto, reunidas numa única média por árvore. Pode-se verificar, comparando as Tabelas I e II, que a resistência na ruptura é sempre maior quando obtida nos pequenos corpos de prova, por serem isentos de defeitos. Já o módulo de elasticidade é sempre maior quando obtido em peças estruturais. Isto se deve, provavelmente, a influência do cisalhamento transversal, efeito dimensional e metodologia de ensaios. Outra ocorrência interessante foi em relação ao coeficiente de variação, o qual não é sempre maior para as peças estruturais, como era de se esperar. Em vista disso e considerando o aspecto aleatório da coleta, podemos afirmar existir uma grande homogeneidade na madeira destas seis espécies de folhosas.

Visando verificar a eficiência da máquina classificadora, todas as peças estruturais foram nela ensaiadas e, nos pontos de flecha mínima, máxima e central, os ensaios foram repetidos de maneira similar numa máquina universal de ensaios. A Tabela III mostra a comparação entre o módulo de elasticidade obtido na máquina, e o módulo de elasticidade simulado, utilizando a análise estatística do "erro da diferença equilibrado", ao nível de 5% de exclusão. Para os módulos de elasticidade dos pontos de máxima flecha e central, a diferença entre as médias não foi significativa para a maioria das espécies. Em relação ao ponto de flecha mínima, há diferença significativa entre as médias para todas as espécies, porém este último resultado é de pouca importância em termos estruturais, em face da segurança de uma estrutura estar relacionada com a menor capacidade de uma peça resistir aos esforços atuantes. Interessante é observar que, para o ponto do módulo de elasticidade mínimo, o E_{Maq} apresenta uma média ligeiramente inferior, portanto a favor da segurança e, no ponto do módulo de elasticidade máximo, ocorre o contrário. Em relação ao ponto central, as médias não apresentam tendências definidas. Este comportamento pode ser atribuído, provavelmente, ao aspecto dinâmico que envolve a determinação do módulo de elasticidade pela máquina classificadora, uma vez que pode-se verificar existir uma grande homogeneidade de resistência ao longo das peças de madeira em relação ao ensaio simulado.

As equações de regressões lineares, bem como os correspondentes coeficientes de correlação entre os módulos de elasticidade obtidos na máquina classificadora e o módulo de elasticidade simulado, são

apresentados na Tabela IV. Embora não se saiba a partir de qual valor o coeficiente de correlação seja considerado suficientemente alto, o menor coeficiente encontrado, 0.75, para a correlação entre os valores mínimos dos módulos de elasticidade, é considerado muito bom para as aplicações práticas. O valor mínimo do módulo de elasticidade das peças estruturais é o mais importante em termos de classificação, pois é responsável pela escolha da classe de tensão a que pertence a peça de madeira. Os valores central e máximo, embora de menor importância, têm significado neste estudo, uma vez que possibilitam verificar toda a variação de resistência da madeira quando classificada mecanicamente. Também foram obtidos coeficientes de correlação suficientemente altos para estes dois últimos níveis de resistência.

A escolha do lado das peças a ser colocado na máquina classificadora para a aplicação de carga foi aleatória, devido a um dispositivo que compensa o efeito de empenos. Foram ensaiadas cerca de 30 peças estruturais na máquina classificadora, de ambos os lados, e uma análise estatística mostrou não existir diferença significativa ao nível de 5% de exclusão entre as médias dos módulos de elasticidade obtidos nos lados opostos.

A Tabela V mostra as equações de regressão linear do módulo de elasticidade real com o módulo de elasticidade obtido na máquina e com o módulo de elasticidade simulado em relação ao ponto central das peças de madeira.

Pode-se verificar pelas equações que, apesar do módulo de elasticidade obtido na máquina classificadora e o módulo de elasticidade simulado terem sido carregados em direção ortogonal ao módulo de elasticidade real, seus valores estão bem correlacionados. O módulo de elasticidade real é aqui indicado como parâmetro básico para estabelecer a curva de classificação (linha de tensões admissíveis).

Pode-se citar como vantagens nesta escolha a não dependência de um tipo particular de máquina classificadora, a possibilidade de se acumular e comparar diretamente os dados obtidos por ensaios realizados em diferentes laboratórios, o parâmetro que melhor estima as outras propriedades de resistência da madeira (18, 48) e também o fato das peças solicitadas a flexão serem normalmente carregadas como viga. Finalmente a alta correlação existente entre o módulo de elasticidade real e o módulo de elasticidade mínimo obtido na classificadora comprova a eficiência da máquina na estimativa do módulo de elasticidade e, consequentemente, assegura sua utilização no processo de classificação de peças estruturais de madeira como um processo altamente vantajoso.

As outras duas equações da Tabela V mostram as correlações do módulo de elasticidade real com o módulo de elasticidade obtido na máquina e o módulo de elasticidade simulado em relação ao ponto central. Isto porque o ponto central das peças se encontra sempre na região onde foram determinados os módulos de elasticidade real, o mesmo podendo não acontecer em relação aos pontos de módulos de elasticidade mínimos em razão do comprimento da peça. Agrupando as seis espécies, a correlação se mantem alta, permanecendo a proximidade entre os valores do módulo de elasticidade obtido na máquina e o módulo de elasticidade simulado com o módulo de elasticidade real.

A Tabela VI mostra as equações de regressão linear da resistência na ruptura em função dos módulos de elasticidade real, módulo de elasticidade mínimo obtido na classificadora e módulo de elasticidade simulado em relação ao ponto central. Verifica-se que os coeficientes de correlação variam bastante de uma espécie para outra. Mesmo agrupando as seis espécies, o coeficiente de correlação permanece relativamente baixo. Isto pode ser explicado pela proximidade da densidade de todas as espécies e pela grande homogeneidade do material tanto quando se considera uma espécie em particular, quando se considera as espécies em grupos, resultando numa nuvem de pontos sem apresentar tendência bem definida para uma determinada curva no gráfico de resistência na ruptura x módulo de elasticidade real (Figura10). O ajustamento para curvas exponenciais, de potências e logarítmicas, não apresentou diferença significativa no coeficiente de correlação.

A densidade tem sido considerada como um bom indicador de resistência para os pequenos corpos de prova isentos de defeitos. Os coeficientes de correlação encontrados entre a resistência na ruptura e a densidade aparente foram bastante baixos tanto para as espécies individuais quanto para as espécies agrupadas. A razão provável deste comportamento é atribuída à diferente influência dos defeitos que normalmente ocorrem nas peças estruturais em relação à resistência e a densidade. O maior coeficiente de correlação (R) para a regressão linear simples entre a densidade aparente e a resistência na ruptura ocorre para a espécie Tauari, sendo de:

 $f_{wm} = 14880 \ D_{ap} - 957 \ equação \ 1 \\ R = 0{,}54$

onde:

 $f_{wm} = resistência média à ruptura na flexão.$

 $D_{ap} = Densidade aparente a 12\% de teor de umidade.$

Para a regressão linear múltipla, acrescentando o módulo de elasticidade real (E) como variável independente, a relação para o Tauari fica,

$$\label{eq:main} \begin{split} f_{wm} &= 13219 \; D_{ap} + 0{,}56 \; E - 808 \; equação \; 2 \\ R &= 0{,}55 \end{split}$$

A regressão linear simples para as seis espécies juntas é,

$$\label{eq:main} \begin{split} f_{wm} &= 9050 \; D_{ap} + 2167.... \text{ equação 3} \\ R &= 0{,}40 \end{split}$$

Numa regressão linear múltipla com o E, para as seis espécies,

 $f_{wm} = 153 \; D_{ap} + 3,07 \; E + 2948 \; equação \; 4 \\ R = 0,56$

O gráfico da Figura 10, mostra a nuvem de pontos da resistência na ruptura x módulo de elasticidade real, na flexão.

Verificou-se que a contribuição da densidade junto ao módulo de elasticidade na avaliação da resistência na ruptura é muito pequena quando se comparam as regressões lineares simples e múltiplas tanto para as espécies individuais quanto para o agrupamento das seis espécies. Conclui-se, portanto, que também em relação aos coeficientes de correlação o módulo de elasticidade real é melhor indicador da resistência na ruptura à flexão que a densidade aparente.

4.1 Agrupamento de espécies

O agrupamento de madeiras por resistência é fundamental para o aproveitamento racional dos recursos florestais e mesmo para a utilização da madeira de maneira competitiva com outros materiais estruturais, considerando a existência de uma grande variedade de espécies de madeira com potencial de utilização. A grande variedade de tensões admissíveis resultantes das várias espécies existentes no Brasil dificulta sobremaneira a utilização prática, sendo necessário racionalizar o manuseio das propriedades de resistência de tais espécies, pelo agrupamento de madeiras de resistência adequadas a um mesmo fim. Com isto, fica mais simples especificar uma determinada espécie, que passa a ser feito por grupo e por classes de resistência. A relação entre a curva de resistência na ruptura à flexão e o módulo de elasticidade real, que representa a classificação mecânica, fica tão mais precisa quanto maior for o número de espécies caracterizadas com esta finalidade. Tendo em vista que as seis espécies estudadas não fornecem uma curva satisfatória, e que as outras sete espécies que complementarão o presente trabalho (ver item seleção de espécies) não foram ensaiadas até o momento e, dentro do espírito comum de acumulação e utilização conjunta de dados, os resultados dos ensaios obtidos em peças estruturais de três espécies brasileiras (Virola, Tachi e Pequiá) realizados por Ricardo M. Della Lúcia em tese de doutorado junto a Purdue University, USA, são aqui incluídos (19). Diferenças no ensaio do módulo de elasticidade se deram em relação a velocidade de carregamento (5,08 mm/min para 2x4 pol. e 6,35mm/min para 2x6 pol.), vão livre de L/d = 64 e lado de aplicação de carga (como tábua). O autor ensaiou 41 vigas de Tachi preto de maneira similar ao ensaio de Della Lúcia, na determinação do módulo de elasticidade real, para verificar estas influências. Os resultados encontrados foram comparados com o módulo de elasticidade real obtido conforme este trabalho, ambos os ensaios feitos em cada uma das 41 peças, não havendo diferença significativa ao nível de 5% de exclusão entre as médias. Os valores encontrados foram,

Valor médio do E das 41 vigas com ensaios realizados de acordo com este trabalho, 1705000 N/cm² Valor médio do E das 41 vigas com ensaios realizados por Della Lúcia, 1705000 N/cm² "t" de student, obtido no teste estatístico "erro da diferença equilibrado", 0,15

Devido a esta grande similaridade entre os dois módulos de elasticidade real, os dados de Della Lúcia foram utilizados na sua forma original, sofrendo correções em relação a unidade de resistência (1N/cm = 1,45 Lb/pol.) e a relação E/G = 35, conforme este trabalho, e não 20 como havia sido adotado por Della Lúcia. Em relação ao ensaio de resistência na ruptura, houve diferença somente em relação a velocidade de carregamento (5,08mm/min para 2x4 pol. e 6,35mm/min para 2x6 pol.), tendo sido desprezada para efeito de agrupamento das espécies. As peças ensaiadas foram de dimensões nominais de 5,08cm x 10,16cm (2 x 4 pol.) e 5,08cm x 15,24cm (2x6 pol.) por 3,00m de comprimento, totalizando 209 peças de Virola (*Virola* sp.), Tachi, (*Tachigalia* prob. *Paniculatum*) e Pequiá (*Caryocar villosum*). Não houve diferença significativa ao nível de 5% nos módulos de elasticidade e resistência na ruptura, entre as peças 2x4 pol. e 2 x 6 pol.

A equação de regressão linear obtida para as nove espécies agrupadas é a seguinte:

$$f_{wm} = 4,59 \text{ E} - 24,10$$
 equação 5 R = 0,75

Onde,

 $f_{wm} = resistência média na ruptura à flexão.$

Verificou-se um sensível aumento no coeficiente de correlação entre as duas variáveis com o acréscimo das três espécies. Procurou-se agrupar as espécies em função da curva da equação de regressão linear de cada espécie, de modo a maximizar o coeficiente de correlação em grupos (23). Retirando a espécie

Tauari, cuja inclinação da reta é bem diferente das demais, verificamos um ligeiro acréscimo no coeficiente de correlação, passando de 0,75 para 0,77. O maior coeficiente de correlação foi obtido quando foi retirada a espécie Pau-jacaré, por apresentar baixa resistência na ruptura em relação ao seu módulo de elasticidade, elevando assim o valor de R para 0,81. A equação correspondente para as sete espécies é a seguinte,

 $f_{wm} = 6,00E - 2234,23$ equação 6 R = 0,81

Considerando vários trabalhos já publicados sobre a relação que melhor se ajusta aos dados de resistência na ruptura e módulo de elasticidade na flexão, a equação de regressão na forma linear é utilizada quase na sua totalidade (18, 36, 37, 38), ficando uma pequena tendência pela relação na forma de potência (5). Devido a isto, a definição da curva de regressão será desenvolvida sobre a equação linear ou de potência, que melhor se ajustar aos dados.

O ajuste da equação acima na forma de potência, para as nove espécies, fornece,

 f_{wm} = 1,106 $E^{1,192}$ equação 7 R = 0,77

Retirando as espécies Tauari e Pau-jacaré,

$f_{wm} = 0,189 E^{1,426}$	equação 8
R =0,81	

O gráfico da Figura 11 mostra as retas das equações de regressão para as nove espécies.

Módulo de elasticidade real (x10³ N/cm²)

Figura 11 – Reta de regressão linear entre a resistência na ruptura à flexão, para cada uma das nove espécies.

A regressão linear múltipla para as sete espécies, acrescentando a densidade aparente como variável independente forneceu um coeficiente de correlação de 0,70 na estimativa da resistência na ruptura à flexão. Dentre as equações que apresentam maiores coeficientes de correlação para as sete espécies, equações 6 e 8, foi feita uma análise de resíduos, utilizando o teste de Durbin-Watson apresentando uma ligeira tendência para a equação de potência (equação 8). Porém as facilidades oriundas da equação de forma linear levaram a optar pela equação 6 na definição das classes de tensão.

As espécies Tauari e Pau-jacaré poderão ser posteriormente utilizadas na formação de novos grupos de resistência, de modo semelhante ao empregado neste trabalho.

O gráfico da Figura 12 mostra a linha da equação de regressão linear para as sete espécies agrupadas.

Figura 12 – Gráfico da resistência na ruptura e módulo de elasticidade à flexão, para as sete espécies agrupadas.

4.2 Determinação das tensões admissíveis

A seguir será desenvolvido um sistema de estabelecimento de classes de tensão, com base na relação entre o módulo de elasticidade real e a resistência na ruptura à flexão, para as sete espécies agrupadas. É importante salientar que este sistema vai fornecer um modelo em termos de definição de classes de tensão, devido ã pequena representatividade do número de espécies utilizadas e também a falta de dados práticos para auxiliar na escolha do número de classes que satisfaçam as necessidades do mercado. Estamos, portanto, fornecendo subsídios para uma futura classificação quanto à resistência das madeiras tropicais brasileiras, considerando a continuação de ensaios em peças estruturais realizados pelas entidades de pesquisa existentes no Brasil.

A variabilidade natural das propriedades de resistência da madeira é considerada traçando-se a linha correspondente a um limite inferior da distribuição em relação a regressão adotada. A curva correspondente a um determinado limite inferior para a regressão linear é de forma hiperbólica, porém, para grandes amostragens, ela se aproxima de uma linha reta. O erro que se comete utilizando a aproximação linear não é grande. Uma das maneiras de calcular esta aproximação linear para um limite inferior da distribuição e regressão o produto estatístico (37),

$$\sqrt[t\bar{s}]{1+\frac{1}{n}}$$

Onde,

t = "t", de Student, que se encontra tabelado em livros de estatística (22, 35).

 \bar{s} = erro padrão de estimativa da tensão de ruptura.

n = número de peças ensaiadas.

Para as sete espécies agrupadas, adotando um limite inferior da distribuição de 5%, têm-se: n = 339.

 $t_{.05} = 1,645.$ $\bar{s} = 1424.09 \text{ N/cm}^2.$

logo a equação de regressão linear se torna,

$$f_{wk} = 6,00E - 2234,23 - \sqrt[ts]{1 + \frac{1}{n}}$$
$$f_{wk} = 6,00E - 2234,23 - \sqrt[1,645*1424,09]{1 + \frac{1}{339}}$$

 $f_{wk} = 6,00E - 4580,08$ equação 9

onde,

 f_{wk} = resistência característica da madeira

O próximo passo consiste em aplicar um fator de redução nesta última equação, traçando-se, assim, a linha de tensões admissíveis. Este fator é composto do efeito de longa duração de carga e de um fator de segurança para prever cargas acidentais. O fator correspondente ao efeito de longa duração de carga (comumente utilizado: 9/16), podendo ser acrescido de 10% para cargas previstas por mais de 10 anos (5, 6, 19, 37). O fator de segurança é de aproximadamente 10/13 (6, 19, 37). Logo, o fator de redução é,

 $\frac{9}{16} * \frac{11}{10} * \frac{10}{13} = \frac{1}{2,1}$

como este fator de redução foi determinado a partir de ensaios em coníferas, um valor mais restrito é recomendado para ser empregado nas folhosas, de 1/2,3 (19).

Logo, a equação de regressão linear correspondente a linha de tensões admissíveis é a seguinte:

$$f_{adm} = \frac{1}{2,3} (6,00E - 4580,08)$$

 $f_{adm} = 2.61E - 1991.34$ equação 10

O gráfico da Figura 13 mostra a reta de tensões admissíveis para as sete espécies de folhosas.

Módulo de elasticidade real (x10³ N/cm²)

Figura 13 – Determinação da linha de tensões admissíveis, pela equação de regressão linear simples entre a resistência na ruptura e módulo de elasticidade real, para as sete espécies agrupadas.

4.3 Definição das classes de tensões admissíveis

O número de classes de tensão, bem como o intervalo entre duas classes consecutivas, será agora proposto com base em revisão bibliográfica, devido à falta de dados práticos e a pouca utilização da madeira como material estrutural no mercado nacional.

A aplicação das séries de Renard ou "Preferred Numbers" na especificação das classes de tensão para a madeira foi recomendada em 1951 pela Food and Agriculture Organization (FAO), das Nações Unidas (8). Cooper, em 1952, propôs a adoção de tais séries universalmente, diante das facilidades decorrentes na importação e exportação de peças estruturais e, particularmente, para os arquitetos e engenheiros de cálculo estrutural (13, 34).

4.4 Números de Renard

Estas séries foram inicialmente propostas pelo engenheiro francês, Charles Renard, e os números das séries conhecidos como números de Renard ou "Preferred Numbers", sendo representados por R5, R10, R20, etc., onde o numeral indica o número de intervalos numéricos na série (8). Consiste basicamente em extrair a raiz quinta, décima, vigésima, etc., respectivamente, de 10, em função do número de intervalos desejados, numa progressão geométrica (8).

$\sqrt[n]{10}$

Onde n é o número de intervalos de classe.

Assim, para cinco intervalos, tem-se a razão,

$$\sqrt[5]{10} = 1,5849$$

A série com cinco intervalos entre zero e 10 é, com os valores arredondados:

1,00 1,60 2,50 4,00 6,30 10,00

Para 10 intervalos, tem-se a razão,

$$\sqrt[10]{10} = 1,2589$$

A série com 10 intervalos entre zero e 10 é, com os valores arredondados:

1,00 1,25 1,60 2,00 2,50 3,15 4,00 5,00 6,30 8,00 10,00

Até 100, basta multiplicar estes números por 10,

10,0 16,0 25,0 40,0 63,0 100,0

A Tabela VII mostra as quatro séries recomendadas pela norma britânica BS-2045/1965 (8). Pearson, em 1965, estabeleceu classes de tensão para as espécies australianas com base na série R10, em função do número de classes de tensão e, consequentemente, o intervalo entre as sucessivas classes (39). As principais vantagens na utilização destas séries são as seguintes (8):

- As séries podem ser estendidas indefinidamente para cima ou para baixo, dividindo ou multiplicando sucessivamente por 10;
- O produto de dois números da série é também um número da série. Pode-se mostrar também que o produto de dois números da série pode ser descoberto, adicionando seus números de ordem e sendo o número da série correspondente a esta soma;
- Se adotadas universalmente, simplificam o mercado importador e exportador de madeira;
- Simplifica o processo de cálculo em relação a indicação e a capacidade de carga das espécies.

O procedimento adotado neste trabalho foi o de escolher as classes de tensão consideradas apropriadas, verificando, em seguida, sua funcionalidade para as espécies em questão (Figura 13). A série R10 foi escolhida por apresentar um número de classes de tensão razoável, isto é, não muito pequeno o que seria antieconômico, nem muito grande, o que traria problemas de ordem prática devido ao pequeno intervalo das classes de tensão, em consequência da variabilidade natural nas propriedades da madeira. Pode-se verificar, pela Tabela VII, que o número de classes pode ser aumentado, adotando-se a série R20, por exemplo, caso haja necessidade, em função do comportamento do mercado da construção civil. As classes de tensão seguintes são provenientes da série R10, multiplicada por 1000 no sistema

internacional de unidades,

630 800 1000 1250 1600 2000 2500 3150.

Para simplificar, as classes são especificadas pelas letras do alfabeto H, G, F, E, D, C, B e A, respectivamente.

Assim, por exemplo, a tensão admissível na flexão, da classe B, seria 2500N/cm². Pela linha de tensões admissíveis, do gráfico da Figura 13, pode-se determinar os valores dos módulos de elasticidade correspondentes as classes de tensão adotadas. Teremos,

Classes	Tensões admissíveis (N/cm ²)	Módulo de elasticidade $(x10^3 \text{ N/cm}^2)$
А	3150	1970
В	2500	1710
С	2000	1520
D	1600	1370
Е	1250	1230
F	1000	1050
Н	630	1000

Para efeito de utilização da máquina classificadora, pode-se adotar como intervalos de módulos de elasticidade, na estimativa da tensão admissível para cada classe, todas as peças com módulos de elasticidade equidistantes da classe. Assim:

Classes	Tensões admissíveis (N/cm ²)	Intervalo dos módulos de elasticidade $(x10^3 \text{ N/cm}^2)$
А	3150	1840 - 2100
В	2500	1615 - 1840
С	2000	1445 - 1615
D	1600	1300 - 1445
E	1250	1180 - 1300
F	1000	1090 - 1180
G	800	1025 - 1090
Н	630	950 - 1025

5 CONCLUSÕES

A análise dos dados obtidos nos ensaios das espécies de madeiras da Amazônia possibilitou tirar as seguintes conclusões:

- A revisão bibliográfica realizada indica que a classificação mecânica de madeiras é mais eficiente e conduz a obtenção de um maior número de peças de mais alta qualidade em relação à classificação visual;
- Comparando os resultados dos ensaios em pequenos corpos de prova isentos de defeitos com os resultados dos ensaios em peças estruturais, verifica-se que os módulos de elasticidade na flexão

dos pequenos corpos de prova foram sempre menores e as resistências na ruptura à flexão sempre maiores em relação as peças estruturais;

- O coeficiente de variação do módulo de elasticidade e a resistência na ruptura à flexão para os pequenos corpos de prova isentos de defeitos e peças estruturais não apresentaram muita diferença quando comparados, o que mostra a homogeneidade das espécies estudadas;
- O "teste da diferença equilibrado" entre as médias dos módulos de elasticidade obtidos na máquina classificadora e simulado em relação ao ponto de flecha máxima apresentou diferença significativa ao nível de 5% de exclusão para duas espécies somente. Em relação ao ponto central nas peças estruturais, a diferença foi significativa somente para uma espécie. Estas diferenças entre as médias podem ser eliminadas possivelmente pela realização de um maior número de ensaios e da otimização dos controles da máquina de classificação para as espécies de folhosas. O coeficiente de correlação entre os módulos de elasticidade da máquina e simulado foi bastante alto para cada uma das espécies ensaiadas;
- A alta correlação encontrada entre o módulo de elasticidade obtido na máquina de classificação (peça solicitada como tábua) e o módulo de elasticidade real (peça solicitada como viga) permite utilizar a máquina de classificação na determinação das classes de tensão definidas pela relação entre a resistência na ruptura e o módulo de elasticidade real à flexão;
- O coeficiente de correlação entre a densidade aparente e a resistência na ruptura à flexão das peças estruturais foi bastante baixo para as seis espécies ensaiadas. A regressão múltipla, acrescentando o módulo de elasticidade real como variável independente, apresentou uma pequena variação no coeficiente de correlação;
- O coeficiente de correlação entre a resistência na ruptura à flexão e o módulo de elasticidade real por espécie variou de 0,39 a 0,76, mostrando a ineficiência da classificação mecânica por espécie individual;
- A classificação mecânica em grupos de espécies de madeiras folhosas mostrou ser mais eficiente, apresentando um coeficiente de correlação de 0,81 para as sete espécies agrupadas.
- O agrupamento pelas linhas de regressão linear entre a resistência a ruptura e o módulo de elasticidade real na flexão de cada espécie possibilitou otimizar o coeficiente de correlação em 0,81 para um grupo de sete espécies;
- Os módulos de elasticidade correspondentes as classes de tensão definidas pelas séries de Renard, ou "Preferred Numbers", podem ser alterados a medida que novas espécies forem incluídas no grupo;
- O processo desenvolvido para estabelecer as classes de tensão deve ser aperfeiçoado ao longo do tempo, em razão do pouco número de espécies utilizadas.

6 TABELAS

	Número	Densidade		Flexão estática			
ESPÉCIE	de corpos de	básica	Parâmetros estatísticos	Módulo de elasticidade	Resistência na ruptura		
	prova	g/cm ³		$(x10^3 \text{ N/cm}^2)$	N/cm ²		
			Média	1254	11740		
Andiroba	39	0,58	Desvio padrão	137	2048		
			Coef. de variação	10,9	17,4		
			Média	1176	11868		
Copaíba	13	0,60	Desvio padrão	118	2323		
			Coef. de variação	10,0	19,6		
			Média	1098	8775		
Mururé	25	0,50	Desvio padrão	147	2176		
			Coef. de variação	13,4	24,8		
			Média	1548	12103		
Pau-jacaré	36	0,66	Desvio padrão	186	2381		
			Coef. de variação	12.0	19,7		
			Média	1264	10868		
Tachi preto	22	0,60	Desvio padrão	157	2430		
			Coef. de variação	12,4	22,4		
			Média	1127	9869		
Tauari	41	0,52	Desvio padrão	118	1343		
			Coef. de variação	10,4	13,6		

Tabela I – Resultados dos ensaios em pequenos corpos de prova isentos de defeitos.

Ensaios realizados conforme normas COPANT-30. Valores corrigidos para 12% de teor de umidade.

	Número	Densidade	Parâmetros	Módulo de elasticidade (x10 ³ N/cm ²)							Resistência
ESPÉCIE	de	aparente		М	aquina (E _№	1aq)	Si	mulado (Es	Sim)	Е	ruptura
	peças	(g/cm^3)		Mín.	Central	Max.	Mín.	Central	Max.	(Real)	(N/cm^2)
			Média	1418	1540	1799	1549	1577	1599	1749	8883
Andiroba	38	0,71	Desvio Padrão	213	184	246	175	141	144	203	2151
			Coef. variação	15,0	11,9	13,7	11,3	8,9	9,0	11,6	24,2
			Média	1509	1625	1862	1591	1609	1623	1775	9508
Copaíba	34	0,74	Desvio Padrão	221	254	304	209	190	198	241	1956
			Coef. variação	14,6	15,7	16,3	13,1	11,8	12,2	13,8	20,6
			Média	1276	1337	1593	1371	1386	1403	1556	6645
Mururé	25	0,63	Desvio Padrão	169	182	261	182	162	157	211	1800
			Coef. variação	13,2	13,6	16,4	13,3	11,7	11,2	13,5	27,1
			Média	1850	2142	2389	1912	1934	1948	2365	9408
Pau-jacaré	36	0,83	Desvio Padrão	311	292	390	348	290	257	377	2065
			Coef. variação	16,8	13,6	16,3	18,2	15,0	13,2	16,0	22,0
			Média	1430	1573	1776	1467	1486	1504	1681	8098
Tachi preto	33	0,71	Desvio Padrão	199	313	281	207	201	191	177	1759
			Coef. variação	13,6	20,0	15,9	14,1	13,5	12,7	10,5	21,7
			Média	1241	1356	1517	1348	1363	1371	1557	8192
Tauari	41	0,61	Desvio Padrão	175	180	222	164	161	158	216	1103
			Coef. variação	14,1	13,2	14,7	12,2	11,8	11,5	13,9	13,5

Tabela II – Resultados dos ensaios na flexão em peças estruturais.

Observação: Valores corrigidos para 12% de teor de umidade.

	Andiro	ba	Copaít	oa	Murur	é	Pau-jaca	aré	Tachi		Tauar	i
Variáveis	Média $(x10^3 N/cm^2)$	*	Média $(x10^3 N/cm^2)$	*	Média $(x10^3$ $N/cm^2)$	*	Média $(x10^3 N/cm^2)$	*	Média $(x10^3 N/cm^2)$	*	$\begin{array}{c} \text{Média} \\ (x10^3 \\ \text{N/cm}^2) \end{array}$	*
E _{Maq} (mín.)	1418		1509		1276		1850		1430		1241	SS
E _{Sim} (mín.)	1549	SS	1591	NS	1371	NS	1912	NS	1467	NS	1348	
E _{Maq} (central)	1540		1625		1337		2142		1573		1356	
E _{Sim} (central)	1577	NS	1609	NS	1386	NS	1934	SS	1486	NS	1363	NS
E _{Maq} (máx.)	1799		1862		1593		2389	SS	1776		1517	
E _{Sim} (máx.)	1599	SS	1623	SS	1403	SS	1948		1504	SS	1371	SS

Tabela III – Comparação entre os módulos de elasticidade da Máquina (EMaq) e Simulado (Esim).

* Nível de significância com 5% de exclusão.

NS – Diferença não significativa entre as médias.

SS – Diferença significativa entre as médias.

Espécie	Número de pecas	Módulo de elasticidade (x10 ³ N/cm ²)	Equação regressão linear	Coeficiente de correlação
	13	Mínimo	$E_{Sim} = 0,64 E_{Maq} + 645$	0,78
Andiroba	38	Central	$E_{Sim} = 0,55 E_{Maq} + 723$	0,72
	-	Máximo	$E_{Sim} = 0,48 E_{Maq} + 738$	0,82
		Mínimo	$E_{Sim} = 0,79 \; E_{Maq} + 406$	0,83
Copaíba	33	Central	$E_{Sim} = 0,58 E_{Maq} + 664$	0,78
	-	Máximo	$E_{Sim} = 0,51 \ E_{Maq} + 673$	0,79
		Mínimo	$E_{Sim} = 0.85 \ E_{Maq} + 289$	0,79
Mururé	25	Central	$E_{Sim} = 0,68 \ E_{Maq} + 478$	0,76
	-	Máximo	$E_{Sim} = 0.35 E_{Maq} + 848$	0,58
	36	Mínimo	$E_{Sim} = 0,91 \; E_{Maq} + 219$	0,82
Pau-jacaré		Central	$E_{Sim} = 0.85 \ E_{Maq} + 115$	0,85
	-	Máximo	$E_{Sim} = 0,45 E_{Maq} + 867$	0,69
		Mínimo	$E_{Sim} = 0,78 \ E_{Maq} + 346$	0,75
Tachi preto	34	Central	$E_{Sim} = 0,54 \ E_{Maq} + 642$	0,84
	-	Máximo	$E_{Sim} = 0.51 \ E_{Maq} + 600$	0,75
		Mínimo	$E_{Sim} = 0.87 \ E_{Maq} + 263$	0,93
Tauari	i 41	Central	$E_{Sim} = 0.81 \ E_{Maq} + 258$	0,91
	-	Máximo	$E_{Sim} = 0,63 E_{Maq} + 413$	0,89

 $\label{eq:table_$

Observação: Os dados foram corrigidos para 12% de teor de umidade.

ESPÈCIE	Número de peças	Módulo de elasticidade (x10 ³ N/cm ²)	Equação de regressão linear	Coeficiente de correlação
		Mínimo	$E = 0.79 E_{Maq} + 628$	0,83
Andiroba	38		$E = 0.81 E_{Mao} + 502$	0,73
		Central	$E = 1,15 E_{Sim} - 62$	0,80
		Mínimo	$E = 0.96 E_{Maq} + 323$	0,87
Copaíba	34	Control	$E = 0.81E_{Maq} + 466$	0,85
		Central	$E = 1,14 E_{sim} - 56$	0,88
	Mínimo		$E = 0.87 E_{Maq} + 443$	0,70
Mururé	25	Control	$E = 0.83 E_{Maq} + 450$	0,71
		Central	$E = 1,14E_{Sim} - 24$	0,88
	36	Mínimo	$E = 0.97 E_{Maq} + 562$	0,80
Pau-jacaré		Control	$E=1,08\;E_{Maq}+55$	0,83
		Central	$E = 1,10 E_{Sim} + 236$	0,85
		Mínimo	$E = 0,72 E_{Maq} + 647$	0,75
Tachi preto	33	Control	$E = 0,58 E_{Maq} + 782$	0,76
		Central	$E = 0.85 E_{Sim} + 416$	0,77
		Mínimo	$E = 1,15 E_{Maq} + 131$	0,93
Tauari	41	Control	$E = 1,05 E_{Maq} + 132$	0,87
		Cenuar	$E = 1,29 E_{sim} - 202$	0,96
Grupo das seis	207	Mínimo	$E = 1,14 E_{Maq} + 150$	0,90
espécies	207	Central	$E = 1,27 E_{sim} - 186$	0,92

Tabela V – Equações de regressão linear entre o módulo de elasticidade real (E) com os módulos de elasticidade mínimo e central da máquina classificadora (E_{Maq}) e simulado central (E_{Sim})

Observação: Os dados foram corrigidos para 12% de teor de umidade.

ESPÉCIE	Número de peças	Módulo de elasticidade (x 10^3 N/cm ²)	Equação de regressão linear	Coeficiente de correlação
		Real	$f_{wm} = 5,81 E - 1283$	0,55
Andiroba	38	Mínimo	$f_{wm} = 4,51 \ E_{Maq} + 2495$	0,45
		Central	$f_{wm}{=}7,\!10\;E_{Sim}{-}2308$	0,46
		Real	$f_{wm} = 6,19 E - 1477$	0,76
Copaíba	34	Mínimo	$f_{wm} = 6,36 \; E_{Maq} - 83$	0,71
		Central	$f_{wm} = 6,18 \; E_{Sim} - 435$	0,59
		Real	$f_{wm} = 4,41 E - 222$	0,52
Mururé	25	Mínimo	$f_{wm} = 4,48 \ E_{Maq} + 931$	0,42
		Central	$f_{wm} = 6{,}02\;E_{Sim} - 1691$	0,54
		Real	$f_{wm} = 4,15 \; E - 407$	0,76
Pau-jacaré	36	Mínimo	$f_{wm} = 4,\!29\;E_{Maq} + 1473$	0,65
		Central	$f_{wm} = 4,67 E_{Sim} + 366$	0,66
		Real	$f_{wm} = 5,19 E - 628$	0,52
Tachi preto	33	Mínimo	$f_{wm} = 2,59 \ E_{Maq} + 4431$	0,27
		Central	$f_{wm} = 4,56 \; E_{Sim} + 1424$	0,41
		Real	$f_{wm} = 1,99 \; E + 5092$	0,39
Tauari	41	Mínimo	$f_{wm} = 2,75 \ E_{Maq} + 4772$	0,44
		Central	$f_{wm} = 2{,}61 \ E_{Sim} + 4634$	0,38
Grupo das seis		Real	$f_{wm} = 3,10 E + 3004$	0,57
espécies	207	Mínimo	$f_{wm} = 3,70 \; E_{Maq} \; 3159$	0,54
		Central	$f_{wm} = 4,12 E_{Sim} + 2107$	0,55

Tabela VI – Equações de regressão linear entre a resistência a ruptura (f_w) e os módulos de elasticidade real (E), mínimo da máquina (E_{Maq}) e simulado central (E_{Sim})

Observação: Dados corrigidos para 12% de teor de umidade.

Número	Séries básicas					
série	R5	R10	R20	R40		
0	1.00	1.00	1.00	1.00		
1				1,06		
2			1,12	1,12		
3				1,13		
4		1,25	1,25	1,25		
5				1,32		
б			1,40	1,40		
7				1,50		
8	1,60	1,60	1,60	1,60		
9				1,70		
10			1,80	1,80		
11				1,90		
12		2,00	2.00	2,00		
13				2,12		
14			2,24	2,24		
15				2,35		
16	2.50	2.50	2.50	2,50		
17				2.65		
18			2,80	2,80		
19				3,00		
20		3,15	3,15	3,15		
21				3,35		
22			3,55	3,55		
23				3,75		
24	4.00	4.00	4,00	4.00		
25				4,25		
26			4.50	4,50		
27				4.75		
28		5,00	5,00	5,00		
29				5.30		
30			5.60	5.60		
31				6,00		
32	6.30	6.30	6.30	6,30		
33				6,70		
34			7,10	7,10		
35				7,50		
36		8.00	8,00	8.00		
37				8,50		
38			9,00	9,00		
39				9.50		
40	10,00	10.00	10,00	10,00		

Tabela VII – Séries básicas de Renard

APÊNDICE 1

Fórmulas utilizadas na determinação dos módulos de elasticidade e resistência na ruptura à flexão para os diferentes tipos de ensaios realizados.

A - Peças estruturais Módulo de elasticidade obtido na máquina classificadora – $E_{\rm Maq}$

$$E_{Maq} = \frac{PL^3}{48y_t I}, em N/cm^2$$

onde,

p = carga de 2617N, aplicada na viga pela máquina classificadora

L = vão livre de 91,44 cm

 $y_t =$ flecha devida a ação da carga P, em cm

I = momento de inércia da viga, em relação ao eixo principal de menor inércia, em cm⁴

Módulo de elasticidade simulado - Esim

$$E_{Sim} = \frac{\Delta P L^3}{48 \Delta y_t I}$$
, em N/cm²

onde,

 Δp = intervalo de carga considerado no gráfico de carga x flecha, em N.

L = vão livre de 91,44 cm

 Δy_t = intervalo da flecha correspondente a Δp , em cm

I = momento de inércia da viga, em relação ao eixo principal de menor inércia, em cm⁴

Módulo de elasticidade real – E

$$E_{\text{Real}} = \frac{\Delta \text{PLL}_1^2}{48\Delta y_f \text{I}}, e \text{m N/cm}^2$$

onde,

 Δp = intervalo de carga considerado no gráfico carga x flecha, em N.

L = vão livre de 182,88 cm

 L_1 = distância entre os dois pontos de aplicação de carga em relação a qual se mede a flecha (5d = 50,80 cm)

 Δy_f = intervalo da flecha relativa a L₁ , em cm

I = momento de inércia em relação ao eixo principal de maior inércia, em cm⁴

B – Pequenas amostras sem defeitos

- Módulo de elasticidade na flexão

$$E = \frac{\Delta P L^3}{48 \Delta y_t I}, em N/cm^2$$

onde,

 Δp = intervalo de carga considerada no gráfico carga x flecha, em N.

L = vão livre de 14d = 71,12cm

 Δy_t = flecha correspondente a ΔP , em cm

I = momento de inércia em relação a linha neutra, em cm⁴

- Resistência na ruptura à flexão

$$f_w = \frac{3P_rL}{2bd^2}$$
, em N/cm²

 $P_r = carga de ruptura, em N$ L = vão livre de 182,88 cm B = largura da viga, em cmd = altura da viga, em cm

C – **Propriedades físicas**

- Densidade aparente

 $D_{ap} = \frac{Peso \ seco \ ao \ ar \ a12\% \ de \ teor \ de \ umidade}{Volume \ a \ 12\% \ do \ teor \ de \ umidade} \ em \ g/cm^3$

- Densidade básica

 $D_b = \frac{Peso \ seco \ em \ estufa}{Volume \ saturado} \ em \ g/cm^3$

- Teor de umidade

 $U = \frac{Peso \ seco \ ao \ ar - \ peso \ seco \ em \ estufa}{peso \ seco \ em \ estufa} \ em \ \%$

APÊNDICE 2

Cálculo do módulo de elasticidade real

No cálculo de vigas de aço, alumínio e concreto armado geralmente se admite que toda flecha é devida ao momento fletor somente. A equação diferencial da linha elástica é da forma

$$\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{d}\mathrm{x}^2} = \frac{\mathrm{M}}{\mathrm{Ei}}$$

Em vigas de metal isto se justifica por vencer grande vão comparado com a altura e apresentar uma razão entre o módulo de elasticidade transversal e longitudinal relativamente baixa (E/G = 2 (43).

Em vigas de madeira é necessária uma altura maior para o mesmo vão de uma viga de metal. Também a relação E/G é bem maior podendo atingir valores de até 40 (41). Torna-se necessário, portanto, considerar a influência do cisalhamento transversal no cálculo de estruturas de madeira solicitadas à flexão.

A flecha total (y_t) de uma viga, assumindo a superposição de efeitos, resulta de um componente devido a flexão (y_f) outro devido ao cisalhamento transversal (y_c) ,

$$\mathbf{y}_{\mathrm{f}} = \mathbf{y}_{\mathrm{f}} + \mathbf{y}_{\mathrm{c}}$$

A derivação da flecha de cisalhamento (y_c) se faz colocando a tensão de cisalhamento na seção transversal de viga uniformemente distribuída, acrescentando-se um fator de correção devido a esta aproximação. Para vigas retangulares, o valor deste fator de correção adotado é de 6/5. A flecha é dada pela equação,

$$\frac{\mathrm{dy}_{\mathrm{c}}}{\mathrm{dx}} = \frac{\mathrm{kQ}}{\mathrm{GA}}$$

onde,

- K = fator de correção que depende da seção transversal. Para a seção retangular vale 6/5
- Q =força cortante
- G = módulo de elasticidade transversal
- A =área da seção transversal

Logo, flecha total de uma viga é dada pela equação diferencial

$$\frac{d^2 y_t}{dx^2} = \frac{d^2 y_f}{dx^2} + \frac{d^2 y_c}{dx^2}$$
$$\frac{d^2 y_t}{dx^2} = \frac{M}{EI} + \frac{KdQ}{Gadx}$$

A solução desta equação para uma viga bi apoiada com carga central (ver figura seguinte) fornece os componentes,

$$y_{f} = \frac{PL^{3}}{48EI}$$
$$y_{c} = \frac{KPL}{4AG}$$

sendo, p = carga atuante L = vão livre $E = m \acute{o}$ dulo de elasticidade real K = 6/5 para seção retangular logo,

$$y_t = \frac{PL^3}{48EI} + \frac{3PL}{10AG}$$

Simplificando a equação, tem-se

$$E = \frac{PL^3}{48Ey_t I} + \frac{3PEL}{10y_t AG}$$

$$E = \frac{PL^{3}}{48y_{t}I} + \frac{PL^{3}}{48y_{t}I} * \frac{144 * I}{10AL^{2}} \frac{E}{G}$$

Como $\frac{PL^3}{48y_t I}$ é o módulo de elasticidade aparente

ou seja, o $E_{Sim} = E_{Maq} = E'$, assim:

$$E = E' + \frac{144 * I}{10AL^2} \frac{E}{G}$$

Como,

$$I = \frac{bd^3}{12} e A = bd$$

Resulta,

APÊNDICE 3

Resultados dos ensaios realizados com a espécie ANDIROBA, corrigidos para 12% de teor de umidade.

Corpo	Densi-	Módulo de elasticidade (x10 ³ N/cm ²)						Resistência	
de	dade	Μ	áquina – E	Maq	Si	mulado – H	Esim	Е	na ruptura f
prova	g/cm ³	Min.	Central	Max.	Min.	Central	Máx.	Real	(N/cm^2)
001	0.75	1568	1568	2185	1597	1597	1735	1666	6987
002	0.78	1793	1793	2195	1882	1882	1833	2078	10447
003	0.81	1509	1509	1960	1509	1509	1637	2009	10055
004	0.63	1607	1607	1735	1597	1597	1568	1960	6439
005	0.73	1548	1548	1676	1509	1509	1519	1705	9976
006	0.72	1548	1676	1823	1450	1607	1627	1882	10809
007	0.74	1529	1529	1989	1646	1646	1637	1882	9584
008	0.66	1529	1529	1813	1539	1539	1607	1793	8781
009	0.74	1352	1352	1705	1441	1441	1490	1735	11525
010	0.62	1294	1382	1705	1578	1588	1529	1617	3861
011	0.68	1431	1656	1950	1676	1637	1617	1754	7017
012	0.76	1264	1441	1539	1421	1392	1460	1597	8742
013	0.66	1127	1254	1401	1343	1352	1382	1519	7840
014	0.61	1166	1480	1588	1548	1588	1558	1833	10359
015	0.77	1303	1490	1588	1607	1578	1588	1656	11731
016	0.65	1382	1715	1852	1833	1813	1784	1921	10966
017	0.72	1196	1196	1656	1529	1529	1450	1588	9212
018	0.68	1245	1509	1617	1519	1529	1676	1460	6429
019	0.72	1901	1901	2323	1901	1901	1940	2293	10849
020	0.77	1637	1637	2117	1725	1725	1901	2029	10800
021	0.67	1568	1568	1842	1627	1627	1646	1823	7154
022	0.67	1509	1637	2185	1666	1656	1607	1852	8144
023	0.73	1911	1911	2097	1833	1833	1862	2058	13338
024	0.69	1558	1686	1842	1607	1578	1607	1774	10310
025	0.74	1686	1833	2244	1646	1666	1695	1950	7644
026	0.69	1499	1627	1764	1578	1588	1568	1715	10672
027	0.72	1225	1313	1392	1352	1392	1392	1656	7265
028	0.69	1029	1352	1656	1098	1431	1607	1392	5184
029	0.78	1225	1372	1470	1323	1323	1352	1421	6586
030	0.61	1235	1313	1509	1411	1441	1392	1529	8193

Apendic	$c_{\rm J} = c_{\rm OIII}$										
Corpo da de apa prova g/	Densi-		Módulo de elasticidade (x10 ³ N/cm ²)								
	dade	М	áquina – E	Maq	Si	mulado – E	Esim	Е	na ruptura		
	g/cm ³	Min.	Central	Max.	Min.	Central	Máx.	Real	(N/cm^2)		
031	0.65	1049	1313	1401	1166	1421	1441	1588	5361		
032	0.66	1480	1705	1842	1548	1588	1597	1695	9673		
033	0.62	1372	1823	1823	1607	1539	1539	1813	8555		
034	0.72	1362	1578	1715	1382	1519	1617	1470	6233		
035	0.88	1235	1411	1754	1343	1392	1382	1548	8487		
036	0.70	1245	1245	1715	1607	1607	1617	1588	9447		
037	0.78	1362	1558	1676	1548	1568	1568	1764	12270		
038	0.69	1392	1490	2029	1686	1784	1735	1842	10721		

	Densi-		Módu	lo de ela	sticidad	$e (x10^3 \text{ N/c})$	cm ²)		Resistência
Corpo de	dade	Máquina – E _{Maq}			Si	mulado – E	Е	na ruptura f	
piova	g/cm ³	Min.	Central	Max.	Min.	Central	Max.	Real	(N/cm^2)
001	0.76	1607	1735	1735	1646	1676	1588	1833	9859
002	0.66	1343	1431	1548	1401	1392	1411	1588	9467
003	0.75	1637	1764	1921	1568	1646	1656	1833	10006
004	0.77	1646	1793	2195	1774	1774	1764	1970	12015
005	0.74	1637	1784	1970	1695	1705	1695	1764	11623
006	0.69	1294	1294	1480	1313	1313	1333	1617	9300
007	0.73	1882	2078	2078	1666	1744	1744	2029	11603
008	0.64	1205	1284	1372	1284	1284	1264	1411	9369
009	0.81	1735	1891	2078	1686	1725	1813	1882	11868
010	0.77	1519	1774	1940	1578	1558	1519	1842	9810
011	0.86	1862	1862	2558	2019	2019	2019	2303	12789
012	0.74	1715	1872	2283	1656	1597	1617	1999	9849
013	0.80	1303	1303	1490	1460	1460	1392	1588	7752
014	0.72	1499	1617	1911	1735	1735	1754	1989	9888
015	0.80	1509	1627	1921	1833	1842	1872	2019	9143
016	0.81	1548	1666	1970	1803	1803	1833	1980	13083
017	0.70	1519	1519	1774	1715	1715	1705	1784	8154
018	0.71	1450	1450	1695	1519	1519	1548	1529	7497
019	0.77	1607	1607	1735	1735	1735	1764	1842	9339
020	0.76	1245	1313	1499	1372	1392	1362	1588	9624
021	0.69	1529	1656	1980	1588	1480	1519	1656	9026
022	0.73	-	_	-	1529	1646	1588	1852	9379
023	0.79	1666	1813	2215	1637	1627	1764	2029	9947
024	0.76	1254	1343	1823	1294	1480	1695	1333	3636
025	0.73	1362	1460	1568	1362	1352	1372	1519	9467
026	0.80	1862	2048	2548	1891	1931	1891	2146	1623
027	0.78	1911	2097	2097	1715	1705	1715	1970	10280
028	0.72	1558	1686	2019	1578	1568	1597	1695	10055
029	0.67	1254	1333	1519	1343	1529	1401	1509	5704
030	0.76	980	1078	1656	1029	1235	1225	1245	5537

Apêndice 3 – Cont. Resultados dos ensaios realizados com a espécie **COPAÍBA**, corrigidos para 12% de teor de umidade.

Apêndice	3 – Cont.								
Corpo de prova	Densi- dade [–]	Μ	$\begin{tabular}{ c c c c c } \hline Módulo & de elasticidade (x10^3 \ N/cm^2) \\ \hline Máquina - E_{Maq} & Simulado - E_{Sim} & E \end{tabular}$				E	Resistência – na ruptura f	
	g/cm ³	Min.	Central	Mãx.	Min.	Central	Max.	(Real)	(N/cm^2)
031	0.71	1372	1588	1715	1627	1607	1627	1842	9428
032	0.76	1431	1539	1656	1676	1568	1656	1637	8526
033	0.66	1245	1411	1509	1480	1480	1548	1558	5791
034	0.76	1617	1901	2097	1842	1891	1911	1960	9839

Densi-Resistência Módulo de elasticidade ($x10^3$ N/cm²) Corpo de dade na ruptura Máquina – E_{Maq} Simulado - Esim E prova aparente f_w (Real) Min. Central Mãx. Min. Central Max. g/cm³ (N/cm^2) 0.65 0.62 0.63 0.67 0.61 0.58 0.65 0.69 0.68 0.61 0.67 0.66 0.61 0.58 0.61 0.60 0.57 0.60 0.62 0.65 0.54 0.65 0.66 0.70 0.58

Apêndice 3 – Cont. Resultados dos ensaios realizados com a espécie **MURURÉ**, corrigidos para 12% de teor de umidade.

	Densi-		Mó	dulo de el	asticidade	$e (x10^3 \text{ N/cm})$	m^2)		Resistência
Corpo de	dade	М	Máquina – E _{Maq}			mulado – E	Е	na ruptura	
piova	g/cm ³	Mín.	Central	Máx.	Mín.	Central	Máx.	(Real)	(N/cm^2)
001	0.80	1950	2156	2156	1744	1744	1862	2195	10809
002	0.84	2225	2225	2862	1921	1921	2038	2489	10133
003	0.85	1686	1842	2244	1607	1627	1597	2470	9143
004	0.86	2019	2519	2871	2185	2166	2009	2656	12544
005	0.82	2185	2185	2460	2038	2038	2038	2538	7193
006	0.81	2068	2293	2577	2146	2146	2127	2460	11123
007	0.85	931	1401	1401	911	1303	1303	1519	6360
008	0.86	2185	2185	2460	1940	1940	1989	2842	10800
009	0.85	1960	2450	2450	2146	2146	2146	2568	6194
010	0.80	1764	2127	2127	1940	1891	1891	2293	9908
011	0.86	2254	2528	2891	2401	2372	2372	2577	10398
012	0.88	1950	2391	2695	2372	2391	2372	2832	9526
013	0.86	1744	2332	2332	2078	2058	2058	2411	9418
014	0.86	1872	2293	2577	1960	2195	2166	2597	11917
015	0.75	1617	1911	2626	1676	1882	1882	2136	8212
016	0.82	1784	2185	2803	2019	1989	2166	2195	10388
017	0.81	1656	1803	1980	1666	1872	1823	2009	7085
018	0.82	1774	2127	2127	2107	2156	2156	2607	11182
019	0.82	2176	2176	2803	1931	1931	1872	2283	9457
020	0.85	2176	2440	2803	1950	1901	1921	2675	9330
021	0.82	1627	1852	2372	1627	1705	1833	2078	8820
022	0.81	1774	2166	2450	1842	1872	1882	2156	8928
023	0.89	2156	2156	2773	2225	2225	2264	2783	1701
024	0.85	2293	2519	2803	2293	2274	2264	2509	1250
025	0.79	1676	2009	2009	1842	1607	1607	2048	8379
026	0.83	1127	1686	1842	1009	1284	1588	1705	5145
027	0.84	1735	2323	2607	2029	1980	1891	2479	9055
028	0.83	1891	2068	2313	1656	1666	1823	2430	11662
029	0.89	1901	2323	2617	2254	2244	2283	2803	11084
030	0.91	2087	2342	2038	2283	2303	2244	2950	11907

Apêndice 3 – Cont. Resultados dos ensaios realizados com a espécie **PAU-JACARÉ**, corrigidos para 12% de teor de umidade.

Apêndice	3 – Cont.								
Corpo de prova	Densi- dade aparente g/cm ³		Resistência						
		dade anarente	Máquina – E _{Maq}		Si	$Simulado-E_{Sim} \\$			na ruptura f
		Mín.	Central	Max.	Min.	Central	Max.	(Real)	(N/cm^2)
031	0.77	1480	1735	1735	1431	1499	1499	1588	5125
032	0.81	2087	2332	2332	2078	2078	2078	2548	10839
033	0.89	2127	2666	3048	2381	2195	1921	2764	9859
034	0.80	1519	1646	1970	1382	1392	1548	1656	6164
035	0.80	1411	1637	1774	1784	1705	1676	1744	6135
036	0.77	1744	2078	2078	1970	1931	1931	2558	11515

Apêndice 3 – Cont.

Resultados dos ensaios realizados com a esp	pécie TACHI PRETO	, corrigidos para 12	2% de teor de
umidade.			

~ .	Densi-		Mó	dulo de el	asticidade	$e(x10^{3} \text{ N/cm})$	m ²)		Resistência
Corpo de	dade [–]	Μ	láquina – E	Maq	Si	mulado – E	Sim	Е	na ruptura
prova	g/cm ³	Min.	Central	Max.	Min.	Central	Max.	(Real)	(N/cm^2)
001	0.72	1597	1921	1921	1568	1558	1558	1833	10045
002	0.83	1656	1950	2146	1490	1431	1382	1833	8330
003	0.63	1470	1470	1715	1509	1509	1539	1793	4841
004	0.63	960	1333	1499	1294	1401	1460	1686	8967
005	0.75	1617	1617	1754	1558	1558	1450	1725	6850
006	0.66	1205	1205	1470	1264	1264	1264	1382	5008
007	0.57	1205	1205	1470	1166	1186	1205	1499	9212
008	0.63	1470	1470	1715	1470	1499	1529	1735	9281
009	0.63	1588	1872	1872	1539	1617	1558	1784	7938
010	0.80	1421	1421	1627	1450	1450	1529	1509	6154
011	0.66	1058	1245	1411	1323	1303	1323	1460	8732
012	0.71	1431	1529	1646	1588	1617	1617	1735	9369
013	0.89	1401	1617	1754	1588	1568	1460	1695	6292
014	0.68	1441	1666	1803	1686	1686	1666	1803	9810
015	0.68	1617	1754	1754	1705	1754	1754	2029	10564
016	0.67	1313	1499	1754	1529	1490	1597	1627	8791
017	0.69	1303	1392	1607	1342	1421	1411	1509	8320
018	0.57	1235	1235	1411	1137	1088	1215	1480	6233
019	0.83	1313	1401	1509	1147	1333	1372	1656	5478
020	0.75	1578	1705	1862	1450	1509	1313	1823	9555
021	0.90	1323	1509	1764	1333	1323	1343	1294	6203
022	0.80	1754	1921	2107	1686	1686	1725	1970	10966
023	0.84	1490	1891	2078	1372	1392	1490	1764	9359
024	0.61	1460	1460	1735	1382	1382	1352	1646	4567
025	0.67	1303	1303	1617	1411	1411	1411	1735	8350
026	0.72	1450	1450	2029	1392	1401	1578	1764	9808
027	0.78	1646	1931	2127	1627	1764	1813	1931	7370
028	0.65	1656	1656	2205	1509	1548	1588	1833	9477
029	-	1931	2793	2793	2264	2205	2205	-	-
030	0.62	1411	1411	1656	1264	1264	1411	1637	9045
031	0.74	1421	1519	1646	1548	1529	1558	1666	7781
032	0.73	1323	1421	1774	1470	1490	1529	1617	9526
033	0.72	1176	1176	1509	1294	1294	1362	1294	6096
034	0.66	1411	1519	1637	1539	1578	1568	1744	9810

Resultado	Densi-	ob rounze	Mó	dulo de el	asticidade	$e (x10^3 \text{ N/cm})$	n^2)		Resistência
Corpo de	dade	М	Máquina – E _{Maq}			mulado – E	E	na ruptura	
prova	g/cm ³	Mín.	Central	Max.	Mín.	Central	Max.	(Real)	(N/cm^2)
001	0.65	1352	1352	1568	1431	1431	1382	1617	8820
002	0.55	911	1009	1068	960	1009	1009	1137	6527
003	0.62	1431	1431	1539	1460	1460	1490	1666	9016
004	0.62	1156	1313	1411	1245	1254	1274	1431	9369
005	0.62	1352	1686	1842	1568	1568	1578	1803	7036
006	0.62	1431	1539	1813	1470	1509	1509	1695	8516
007	0.51	1107	1176	1431	1264	1254	1284	1343	7105
008	0.55	1049	1294	1294	1235	1235	1235	1411	8232
009	0.65	1186	1431	1656	1441	1441	1460	1578	10280
010	0.66	1490	1725	1725	1588	1607	1607	1833	9163
011	0.56	862	1029	1147	1049	1078	1058	1156	5831
012	0.55	1156	1235	1411	1235	1235	1235	1401	7183
013	0.59	1323	1323	1656	1372	1372	1372	1607	8448
014	0.65	1254	1254	1509	1372	1372	1343	1529	7889
015	0.64	1627	1754	2107	1705	1725	1779	2068	7967
016	0.60	1294	1470	1588	1343	1343	1382	1578	8742
017	0.66	1186	1333	1519	1372	1392	1401	1509	10074
018	0.60	1166	1225	1303	1215	1215	1235	1431	7262
019	0.65	1421	1529	1646	1539	1558	1558	1882	8840
020	0.61	í'235	1401	1617	1392	1411	1548	1568	7056
021	0.62	1411	14.11	1793	1460	1450	1450	1656	8497
022	0.56	902	941	1147	1049	1029	1049	1137	7830
023	0.63	1196	1362	1362	1215	1313	1313	1480	8614
024	0.62	1196	1196	1274	1225	1225	1235	1470	9437
025	0.65	1548	1548	1833	1646	1646	1637	1931	9075
026	0.61	1186	1264	1588	1333	1441	1529	1686	4929
027	0.57	1196	1352	1352	1254	1264	1264	1333	6919
028	0.55	1039	1284	1284	1245	1245	1245	1509	7987
029	0.69	1372	1470	1578	1421	1421	1411	1735	10025
030	0.66	1019	1254	1333	1127	1176	1205	1245	7771

Apêndice 3 – Cont. Resultados dos ensaios realizados com a espécie **TAUARI**, corrigido para 12% de teor de umidade.

Apêndice	3 – Cont.								
	Densi-		Resistência						
Corpo de	dade [–]	$M\acute{a}quina-E_{Maq}$		Maq	Si	mulado – E	Sim	Е	na ruptura
provu	g/cm ³	Mín.	Central	Max.	Min.	Central	Máx.	(Real)	(N/cm^2)
031	0.59	1186	1431	1539	1303	1352	1382	1539	8193
032	0.64	1039	1156	1362	1196	1215	1313	1254	7340
033	0.59	1117	1117	1343	1176	1176	1274	1382	7517
034	0.63	1529	1529	1989	1568	1568	1411	1891	8281
035	0.68	1176	1245	1401	1392	1392	1362	1627	8016
036	0.63	1254	1441	1548	1392	1382	1382	1558	9036
037	0.60	1215	1382	1480	1254	1294	1303	1450	8330
038	0.66	1362	1362	1578	1490	1490	1382	1637	9026
039	0.62	1303	1597	1597	1480	1519	1519	1735	9212
040	0.63	1382	1382	1597	1421	1421	1450	1764	8399
041	0.62	1284	1362	1362	1372	1372	1372	1558	8095

APÊNDICE 4

Virola	Tachi	Piquiá
teor de umida	de.	
Resultados dos ensaios de fle	exão realizados por Della Lúcia em peça	as 2" x 4", corrigidos para 12% de

V IIO	v IIOIa			Гіциіа			
Módulo de elasticidade Real (x10 ³ N/cm ²)	Resistência na ruptura (N/cm ²)	Módulo de elasticidade Real (x10 ³ N/cm ²)	Resistência na ruptura (N/cm ²)	Módulo de elasticidade Real (x10 ³ N/cm ²)	Resistência na ruptura (N/cm ²)		
1127	4 606	1499	8722	1921	8614		
1303	5067	1294	8408	1695	6184		
1392	5027	1607	8791	1705	7458		
980	3548	1 833	10153	1862	10564		
951	2391	1499	8301	2048	10123		
1 235	5380	1480	6429	1960	8898		
1254	4841	191 1	10084	1813	7752		
1176	5165	1 950	8712	1578	8800		
1343	4528	1568	4626	1607	9878		
1235	4616	1548	3440	1646	8144		
1186	4959	1656	6762	1793	8056		
1352	5106	1490	7683	1382	7076		
1137	2097	1842	8908	1568	8771		
1656	5674	1793	9045	2068	7956		
970	3528	1656	6840	1813	8663		
1284	3900	1578	6262	1891	8977		
1147	4253	1754	8389	2009	9526		
970	2705	1490	4165	1529	6978		
1039	4312	1666	5929	2136	11280		
1107	3352	1646	9976	1803	1 0094		
1382	3479	1392	5331	1637	7517		
1205	4185	1754	6066	2303	1 0858		
1303	4488	1431	3783	191 1	10604		
951	4077	1421	5488	1686	6948		
960	4694	1529	7654	2009	9075		
1000	2783	1 862	8987	1803	8840		
1196	4292	1480	7517	2401	12515		
764	2117	1911	7076	2166	1 0780		
1049	3675	1529	8124	2411	11515		
1009	4175	1490	5449	1744	8996		
1107	4145	1470	7899	2323	13034		

Apêndice 4 – Cor	nt.				
Vire	ola	Tac	chi	Piq	uiá
Módulo de elasticidade Real (x10 ³ N/cm ²) Resistência na ruptura (N/cm ²)		Módulo de elasticidade Real (x10 ³ N/cm ²) Resistênc: na ruptur (N/cm ²)		Módulo de elasticidade Real (x10 ³ N/cm ²)	Resistência na ruptura (N/cm ²)
1215	4714	1901	8879	1970	1 0290
794	4684	1774	8203	1705	8506
1235	3528	1509	8595	2048	8418
-	-	1548	8918	-	-
-	-	1548	7644	-	-
-	-	1392	6341	-	-
_	-	1725	9418	-	_
	-	1450	8320	-	_

Obs. O módulo de elasticidade real foi obtido com a relação E/G = 35

Apêndice 4 – Cont. Resultados dos ensaios realizados por Della Lúcia em peças 2" x 6", corrigidos para 12% de teor de umidade.

Virola		Tachi		Piquiá	
Módulo de elasticidade Real (x10 ³ N/cm ²)	Resistência na ruptura (N/cm ²)	Módulo de elasticidade Real (x10 ³ N/cm ²)	Resistência na ruptura (N/cm ²)	Módulo de elasticidade Real (x10 ³ N/cm ²)	Resistência na ruptura (N/cm ²)
1205	4851	1646	6987	1980	8889
951	3802	1 539	7066	1970	10006
1098	3185	1617	8105	1627	6458
882	3410	1980	11054	2176	9320
1264	5067	1588	4890	1891	8428
1117	5076	1803	8036	1803	9584
1127	431 2	1578	5625	1872	8506
1186	4116	1656	9271	1754	8320
1186	4528	1509	5802	2019	9202
902	3459	1784	6919	2019	9898
980	3371	1940	7223	1813	8095
1137	3224	1901	8585	1970	7546
1147	4155	1921	1 0251	1764	9124
1009	2852	1725	8536	2048	8791
1294	5635	1470	7938	1725	7732
1078	2430	2107	9839	1676	7232
1137	3763	1597	3518	1921	7977
91 1	2842	1833	9006	1725	7801
1186	3695	1470	9085	1352	4812
1098	4635	1793	8585	2215	10035
892	3577	1 891	4910	2313	11260
1078	3499	1568	7605	1754	7624
1245	4371	1793	7448	1705	8516
1333	4782	1637	7722	2166	7820
1039	4165	1568	8212	1852	8908
892	3312	1744	9222	1842	8820
-	-	1333	6252	191 1	8242
_	-	1676	8046	1872	7615
-	-	1499	7693	2146	9085
-	-	1539	7722	2381	10172
-	-	1499	7909	2009	8144
_	-	1823	7811	1911	731 1

Apêndice 4 – Cont.								
Virola		Tachi		Piquiá				
Módulo de elasticidade Real (x10 ³ N/cm ²)	Resistência na ruptura (N/cm ²)	Módulo de elasticidade Real (x10 ³ N/cm ²)	Resistência na ruptura (N/cm ²)	Módulo de elasticidade Real (x10 ³ N/cm ²)	Resistência na ruptura (N/cm ²)			
-	-	1421	6399	2097	9937			
-	-	1921	6497	1646	7909			
-	-	1901	8497	2136	9800			
-	-	1901	9330	-	-			
-	-	1646	7595	-	-			
-	-	1539	6105	-	-			
-	-	1470	8016	-	-			
-	-	1568	8791	-	-			
-	-	1686	8007	-	-			

Obs. O módulo de elasticidade real foi obtido com a relação E/G = 35

REFERÊNCIAS BIBLIOGRÁFICAS

- ANTON, A. <u>Mechanical stress grading of timber and derivation of basic working stresses</u>. Sydney, Australia, Forestry Commission of New South Wales, 1977. 16 p.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. <u>Cálculo e execução de estruturas de</u> <u>madeira</u>, NB-11. Rio de Janeiro, Brasil, ABNT, 1951.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. <u>Ensaios físicos e mecânicos, método</u> <u>brasileiro</u>, MB-26. Rio de Janeiro, Brasil, ABNT, 1940.
- BENDTSCH, B.A.; FREESE, F.; ETHINGTON, R.L. A forest sampling method for wood strength. <u>Forest Products Journal</u>, <u>20</u>C11): 5, 1970.
- BODIG, J. <u>A review of the wood engeneering program at INPA/CPPF</u>. Manaus, Brasil, 1982. 29 p. (Mimeografado)
- BODIG, J. & JAYNE, B.A. Mechanics of_woods and wood composites. New York, Van Nostrand Reinhold, 1982. 712 p.
- 7. BOHANNAN, B. Effect of size on bending strength of wood members. Madison, Wis, Forest Products Laboratory, 1966. 30 p. (Research paper FPL, 56).
- 8. BOOTH, L.G. <u>The aplication of preferred numbers to the determination of basic stresses, grades</u> <u>and sizes of structural timber</u>. London, UK, Imperial College, 1967. 16 p.
- BOOTH, L.G. & REECE, P. O. <u>The structural use of timber</u>. London, UK, E. & F.N. Spon, 1967. 285 p.
- 10. BRITISH STANDARDS INSTITUTION. <u>Methods of test for determination of certain physical</u> <u>and mechanical properties</u> of tim<u>ber in structural size</u>. BS 5820. London, UK, BSI, 1979.
- 11. BRITISH STANDARDS INSTITUTION. <u>Specification for tropical hardwoods graded for</u> <u>structural use</u>. BS 5756. London, UK, BSI, 1980.
- COMISSION PANAMERICANA DE NORMAS TÉCNICAS. <u>Maderas: Método de determinaci</u>on <u>de</u> flex<u>ion estática</u>. COPANT 30:1-006. COPANT, 1972. 4 p.
- COOPER, K.L. <u>Preferred stress grades for structural timber</u>. Melbourne, Australia, Commonwealt Scientific and Industrial Research Organization, 1952. 7 p.
- 14. COURSES on stress grading of timber. London, UK, Princes Risborough Laboratory, s.d. 17 p.
- CURRY, W.T. <u>Mechanical stress grading of timber</u>. Princes Risborough, UK, Forest Products Research Laboratory, 1969. 11 p. (Timberlab paper, 18)
- 16. CURRY, W.T. <u>Procedures for evaluating grading machines</u>. Princes Risborough, UK, Forest Research Laboratory, s.d. 6 p.
- CURRY, W.T. & COVINGTON, S.A. <u>Grade stresses for European redwood and whitewood</u>. London, UK, Forest Products Research, 1969. 24 p. (Bulletin, 52).
- CURRY, W.T. & TORY, J.R. <u>The relation between the modulus of rupture (ultimate bending stress)</u> and modulus of elasticity of timber. London, UK, Princes Risborough La boratory, 1976. 19 p.

- 19. DELLA LUCIA, R.M. <u>Strength grading of construction lumber for Brazil</u>. Lafayette, Indiana, Purdue University, 1975. 152 p. (Dissertation Ph.D.)
- ETHINGTON, R.L. & FLEISCHER, H.D. A perspective on structural lumber grading. <u>Forest</u> <u>Products Journal</u>, <u>23</u> (9): 54- 5, 1973.
- FEWELL, A.R. <u>Relations between the moduli of elasticity of structural timber in bending</u>. London, UK, Princes Risborough Laboratory, 1980. 14 p.
- 22. FREESE, F. <u>Elementary statistical methods for foresters</u>. Madison, Wis, Department of Agriculture, 1967. 87 p. (Agriculture handbook, 317)
- FREITAS, A.R. <u>Probabilistic approach in the design of wood structures in Brazil based on the variability of 24 species</u>. Blacksburg, Virgínia, Virgínia Polytechnic Institute and State University, 1978. 79 p. (Dissertation Ph.D.)
- FURIATI, M. <u>Classificação estrutural de peças de madeira</u>. São Carlos, SP, Universidade de São Paulo, 1981. 133 p. (Dissertação de mestrado).
- 25. HILBRAND , H.C. & MILLER, D.G. Machine grading theory and practice. <u>Forest Products</u> Journal, <u>16</u> (11): 28-40, Nov. 1966.
- HOYLE, R.J. Third short course: <u>Machine stress rated lumber</u>: proceedings of third. Vancouver, Washington, Washington State University. 1970. 197 p.
- 27. HOYLE, R.J. <u>Wood technology in the design of structures</u>. Pullman, Washington, Washington State University, 1971. 312 p.
- HUDDLESTON, E.B. & ANTON, A. The grading of timber into stress grades by mechanical means. Journal of the Institute of Engeneers, <u>39</u> (6): 1967.
- 29. INSTITUTO BRASILEIRO DE DESENVOLVIMENTO FLORESTAL. <u>Madeiras da Amazônia</u>: Características e utilização. Brasília, CNPq, 1981. v. 1, il.
- KLOOT, H. <u>The strenght group and stress grade Systems</u>. Melbourne, Australia, Forest Products Newsletter, 1973. 6 p. (Newletter, 394).
- LAVERS, G.M. <u>The strenght properties of timbers</u>. London, UK, Forest Products Research, 1969.
 62 p. (Bulletin, 50).
- LISBOA, C.D.J. O Laboratório de Produtos Florestais em Brasília e a classificação das madeiras pela sua resistência. In: CONGRESSO FLORESTAL BRASILEIRO, 3., Manaus, dez. 1978. <u>Anais</u>. <u>Silvicultura</u>, 2_: 444-5, 1 978.
- LISBOA, C.D.J. <u>Stress grading machine project</u>. London, UK, Princes Risborough Laboratory, 1979. 26 p. (Mimeografado).
- MARKWARDT, L.J. <u>Strength studies of timber and the development of structural timber grades in</u> <u>the United States</u>. Madison, Wis., Forest Products Laboratory, 1953. 14 p.
- MEYER, L.P. Pro<u>babilidade</u>: <u>aplicações à estatística</u>. Trad. de Ruy de C.B. Lourenço Filho. Rio de Janeiro, Livros Técnicos e Científicos, 1976. 391 p.

- MILLER, D.G. <u>Factors affecting the "aut-turn" of a now-destructive test</u>. Ottawa, Canada, Forest Products Laboratory, 1966. 5 p.
- MULLER, P.H. <u>Machine stress-grading of scaffold boards</u>. Pretoria, South África, Council for Scientific and Industri Research, 1969. 58 p. (Report, 287).
- 38. NEWS of timber research. Princes Risborough, UK, Princes Risborough Laboratory, 1974. 9 p.
- PEARSON, R.G. <u>The stablishment of working stress for groups of species</u>. Melbourne. Australia, Commonwealth Scientific and Industrial Research Organization, 1965. 40 p. (Paper, 35).
- 40. PLESSEY TELECOMMUNICATIONS. "Computermatic Mk P IVa timber stress grading machine". New South Wales, Australia. 1973 (handbook, 28M)
- ROCCO LAHR, F.A. <u>Sobre a determinação de propriedades de elasticidade da madeira</u>. São Carlos, SP, Universidade de São Paulo, 1983. (Tese de doutorado).
- SA RIBEIRO, R.A. <u>Training at structural design in timber section</u>. London, UK, Princes Risborough Laboratory/Manaus, Brasil, Instituto Nacional de Pesquisas da Amazônia, 1981. 13 p. (Mimeografado)
- SENFT, J. <u>Shear deflection in timber beams and a method for the determination of shear moduli</u>. Lafayette, Indiana, Purdue University, 1953. 14 p. (Station bulletin, 589).
- 44. SENFT, J.F.; SUDDARTH, S.K.; ANGLETON, H.D. <u>A new approach to stress grading of lumber</u>. Lafayette, Indiana, Purdue University, 1962. 4 p. (Journal paper, 1822).
- SUNLEY, J.G. <u>Grade stress for structural timber</u>. London, UK, Forest Products Research, 1968. 19
 p. (Bulletin, 47I).
- 46. SUNLEY, J.G. <u>Review of non-destructive testing of timber</u>. Princes Risborough, UK, Forest Products Research Laboratory, 1969. 8 p. (Timberlab papers, 19).
- SUNLEY, J.G. & HUDSON, W.M. Machine-grading of lumber in Britain. <u>Forest Products Journal</u>, <u>14</u> (4): 155-8, 1964.
- 48. TORY, J.R. Modulus of elasticity. In: ANGLO-SCANDINAVIAN CONFERENCE ON STRESS GRADING. Princes Risborough, 1972. 12 p. (Paper, 9).
- 49. TORY, J.R. The regression of modulus of rupture on modulus of elasticity. In: ANGLO-SCANDINAVIAN CONFERENCE ON STRESS GRADING. Princes Risborough, 1972. 5 p. (Paper, 10).
- 50. WALFORD, G.B. Combined visual and mechanical grading of Pinus radiata. <u>New Zealand Journal</u> of Forestry Science, *U* (3): 298-303, 1981.
- 51. WOOD HANDBOOK: Wood as an engeneering material. Madison, Wis., Forest Products Laboratory, 1974. 1 v. (Agriculture handbook, 72).